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Introduction
This work consists of the Undergraduate Thesis1 required for the Bachelor’s degree in Computer Science at
the Federal University of Minas Gerais (UFMG). Our main goal will be to understand how to apply tools
from areas of pure mathematics, such as non-commutative algebra and ring theory, to problems in graph
theory and combinatorial optimization, which are of great interest to computer science as a whole.

We begin with a graph X, which is a set V of vertices and a set E ⊆ V × V of edges that connect the
vertices. Graphs can be found in various research areas: they are used to describe molecules and other
chemical structures, to model physical systems of particle interactions, to understand relationships between
social network users, and many other things. These structures are also of extreme importance to computer
science: 10 of the 21 original NP-complete problems described in [Kar72] are explicitly about graphs, and
this diversity of interesting and difficult problems is perhaps one of the main drivers for the development of
graph theory throughout the 20th century, which is now an extremely rich and deep area.

There are various ways to create a matrix that captures the combinatorial structure of X, and perhaps
the most natural way is through the adjacency matrix, denoted by A(X). This is a matrix with rows and
columns indexed by the vertices of X, such that the entry uv of the matrix is equal to 1 if uv is an edge
of X, and equal to 0 otherwise. From this, we may ask: what kind of combinatorial information about
the graph can be extracted from the algebraic properties of its adjacency matrix? Questions like this are
characteristic of the areas now known as spectral theory and algebraic graph theory, and our approach will
use various techniques from these areas. In particular, we will be interested in certain families of regular
graphs whose adjacency matrices are naturally associated with algebras. An algebra is nothing more than
a vector space equipped with a multiplication operation between its elements, and in general, we will be
interested in understanding what kind of combinatorial information we can extract from algebras associated
with certain graphs.

In the first chapter, we discuss all the essential prerequisites about groups, rings, and modules, and
we prove all the theorems that will be used throughout the work (a reader who is already familiar with
ring theory and group theory may skip this chapter). The second chapter discusses semisimple rings and
modules, culminating in a proof of the Wedderburn and Artin Theorems. We also prove basic results about
the Jacobson radical, and finally, we give a brief discussion of the representation theory of finite groups. The
third chapter focuses on complex matrix algebras and presents several constructive and non-constructive
proofs about the semisimplicity of certain algebras. In the fourth and final chapter, we discuss the notions of
association schemes and coherent configurations, presenting various important examples related to graph
theory and finite groups. We also discuss in detail the basics of distance-regular graphs, which are particularly
important for algebraic combinatorics, and some applications of association schemes to error-correcting
codes theory. As main references, we use chapters 4, 5, 7 from [Coh12], 1, 2, 4 from [CR66], 4 from [Far12],
1, 2 from [FD12], 1, 2, 3 from [Lam13], 13, 17, 18 from [Lan05], 4 from [Pas04], 1, 2 from [VS21], the lecture
notes of [Men23] from the UFMG Non-commutative Algebra course, 1, 2 from [Bai04], 2, 3, 4 from [BCN11],
15 − 17, 20 − 22 from [Big93], 2 from [CP23], 10 − 13 from [God93], 1, 2, 16, 19, 20 from [God10], 2, 8, 10 from
[GR13]. Additionally, we also discuss results found in other articles and books, which are duly cited when
necessary.

We tried to make this material as self-contained as possible, but we assume that the reader is already
familiar with the topics of abstract algebra, e.g. [Gal21], linear algebra, e.g. [Axl14], and graph theory, e.g.
[Die05].

1This is a translated and updated version of the original manuscript published in Portuguese.
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1 Basic Structures
Our main objective now is to introduce the basic algebraic structures necessary for the other results presented
throughout the work. We will begin with groups, and then proceed to rings, modules, and algebras.

1.1 Groups

1.1.1 Basic Concepts

Definition 1.1.1 (Group). Given a set G equipped with a binary operation · : G×G 7→ G, we say that
(G, ·) is a group if for all a, b, c ∈ G the following conditions hold:
(1) a · b · c = a · (b · c) = (a · b) · c;

(2) There exists an identity element e in G such that a · e = e · a = a;

(3) There exists an element a−1 in G such that a · a−1 = e = a−1 · a.
Both the identity element and the inverse are unique, and if the operation is commutative, we say the group
is abelian.

Item (1) tells us that the group’s operation is associative, (2) guarantees the existence of an identity
element, and (3) shows that every element of a group is invertible. There are several important examples of
groups: the symmetric group Sym(X) on a set X consisting of all bijections from X to X with the operation
of function composition – and such a set is denoted by Sym(n) or Sn when X is finite and has n elements; the
general linear group GL(n,C) consisting of the invertible n× n matrices with entries in the complex numbers
and the operation of matrix multiplication; the dihedral group Dn of symmetries of a regular polygon with n
vertices; and many others.

Given a subset H ⊆ G, we say that H is a subgroup – denoted by H ≤ G – if H is also a group with
respect to the same operation as G. In this case, we can observe that H is a subgroup of G if and only if H
contains xy−1 for any x, y ∈ H. There are two common notations for groups: the multiplicative notation,
where we represent the group operation as multiplication · and its identity element as 1, and the additive
notation – usually used in abelian groups – where we use + to represent the operation and 0 as the identity
element.

If g, h ∈ G, we denote the conjugation of g by h as gh = hgh−1, and we say that a subgroup N ≤ G is
normal if hNh−1 = {hgh−1|g ∈ N} = N for any h ∈ G, i.e., if N is invariant under conjugation by elements
of G. Given groups G and H, we can study maps between them that preserve their group structure, i.e.,
functions of the form

φ : G 7→ H,

φ(x · y) = φ(x) · φ(y).
These functions are called group homomorphisms, and it is immediate to note that φ(eG) = eH , and that
φ(x−1) = φ(x)−1. If a homomorphism is injective, it is called a monomorphism, if it is surjective, it is called
an epimorphism, and if it is bijective, it is called an isomorphism, and we write G ∼= H when G and H are
isomorphic groups. A homomorphism from a group to itself is called an endomorphism, and when this map
is bijective, it is called an automorphism, and in this case, we denote the set of automorphisms of a group by
Aut(G), which is also a group under function composition. Given a homomorphism φ between groups G and
H, we define its kernel and image as the sets

ker(φ) := {x ∈ G|φ(x) = eH} ⊆ G,

Im(φ) := {φ(x)|x ∈ G} ⊆ H,

respectively, and it is immediate to note that ker(φ) is a normal subgroup of G, and that Im(φ) is a subgroup
of H. From these definitions, we can observe that a homomorphism is injective if and only if its kernel
contains only the identity element, and in this case, we say that the kernel is trivial. The terminology we
presented for functions between groups will also be used for functions between the other algebraic objects
discussed in the following sections, with the necessary adjustments that will be clear from the context.
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1.1.2 Actions

We say that G acts on a set X if there exists a homomorphism φ between G and the symmetric group
Sym(X) of X, that is, it is possible to map elements of G to permutations of X. In this case, if σ ∈ G and
x ∈ X, we write σx := φ(σ)(x). A group G always acts naturally on itself via the so-called regular action
(on the left), defined by

φ : G 7→ Sym(G),
φ(g) = gL,

where gL(h) = gh, that is, we map each element g of the group to the function that multiplies elements of
the group by g on the left. We can make an analogous construction for right multiplication via g 7→ gR
where gR(h) = hg−1, and take the inverse of g to ensure that the map is a homomorphism. Moreover, if
gL = id, then g = gL(1) = 1, so φ is an injective map. In general, a permutation representation of G is
a homomorphism from G to some symmetric group, and we say that this representation is faithful if it is
injective, so the previous construction shows that every group admits a faithful permutation representation.
These observations lead to the following classical result:

Theorem 1.1.2 (Cayley’s Theorem). Every group G has a faithful permutation representation.
■

Whenever G acts on a set X, we can consider sets of the form Gx = {σx|σ ∈ G} for any x ∈ X, and
notice that the distinct sets of this form partition X. These sets form the so-called orbits of the action, and if
Xi is an orbit, then Xi = Gx for any x ∈ Xi, and in particular these orbits are precisely the minimal invariant
subsets under the action of G, that is, GXi = Xi. We can also consider the set Gx = {g ∈ G|gx = x} of
elements of the group that fix x, called the stabilizer of x, and we will soon see that the orbits and stabilizers
of a group are closely connected. The group G always acts on itself by conjugation, that is, by the map
g 7→ φ(g) where φ(g)h = hg, and the orbits of this action are called the conjugacy classes of the group,
while the stabilizer of this action is the so-called centralizer CG(g) of an element x, which contains all the
elements of the group that commute with g. If H is a subgroup of G, then H also acts on G by left and right
multiplication, and the orbits of these actions are sets of the form Hg = {hg|h ∈ H}, gH = {gh|h ∈ H},
called left and right cosets, respectively. It is worth noting that if Y ⊆ X is a subset invariant under the
action of G, then Y is a disjoint union of orbits, and if G acts transitively on Y , then Y is an orbit of the
action, that is, a subset is an orbit if and only if it is G-invariant and G acts transitively on it.

If H is a subgroup of G, then the cosets G/H := {g1H, . . . , gkH} of H partition G, but note that
|giH| = |gjH|, that is, |G| = k|H|, where k is the number of cosets of H, and from this we obtain the
following famous result:

Theorem 1.1.3 (Lagrange’s Theorem). Let G be a finite group and H be a subgroup of G, and let [G : H]
be the number of cosets of H in G – called the index of H. Then

|G| = [G : H] · |H|,

and in particular, |H| divides |G|.
■

The previous theorem is one of the fundamental basic results in group theory, and now we will see how
to use it to obtain another important theorem about orbits and stabilizers.

Theorem 1.1.4 (Orbit-Stabilizer Theorem). If G is a group that acts on a set X, then for each x ∈ X, there
is a bijection between the elements of the orbit Gx and the cosets of the stabilizer Gx in X. In particular, if
G is finite, then |Gx| = [G : Gx] and

|G| = |Gx| · |Gx|.
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Proof. To prove the theorem, we first fix x ∈ X and consider its orbit Gx, and then we define the map φx
that takes elements of Gx to the set of cosets G/Gx,

φx : Gx 7→ G/Gx

φx(y) = gGx,

where g ∈ G is such that gx = y. First, we show that the function is well-defined, that is, if g1, g2 ∈ G are
such that g1x = g2x = y, we want to show that g1Gx = g2Gx. Indeed, we have that

g−1
2 g1x = g−1

2 y = x,

that is, g−1
2 g1 ∈ Gx, and therefore g1Gx = g2Gx. Note also that if g1Gx = g2Gx, then g−1

2 g1 ∈ Gx, so
g1x = g2x, which shows the injectivity of the map. Finally, if gGx is a coset, we just consider the element
gx ∈ Gx from the orbit and notice that φx(gx) = gGx, and hence φx is a bijection. In the case of a finite
group, this bijection implies that |Gx| is finite and equal to [G : Gx], so by Lagrange’s Theorem we have that

|G| = |Gx| · [G : Gx] = |Gx| · |Gx|,

as we wanted. ■

We say that G acts transitively on X if for any x, y ∈ X, there exists g ∈ G such that gx = y, that is, for
any x ∈ X, the orbit Gx = X, and thus the previous theorem tells us that in the case of transitive groups:

|G| = |Gx| · |X|,

that is, |X| divides the order of the group.

1.1.3 Products and Sums

A construction that will be important for the upcoming sections is the notion of products between groups
and subgroups. If H,K are subgroups of G, we define the product HK as

HK = {hk|h ∈ H, k ∈ K},

and it is immediate to check that HK is a subgroup if and only if HK = KH, and it is also worth mentioning
that if K is normal, then HK = KH and thus the product is a subgroup. We can also form a new group
from distinct groups:

Definition 1.1.5 (External Direct Product of Groups). Let G,H be groups, then we define their external
direct product as the set

G×H := {(x, y)|x ∈ G, y ∈ H},

with operation given by
(x1, y1)(x2, y2) := (x1x2, y1y2).

This set is a group with identity element given by (eG, eH).

If G1×G2 is an external direct product of groups, we can consider the normal subgroups G′
1 = {(g1, e2)|g1 ∈

G1}, G′
2 = {(e1, g2)|g2 ∈ G2}, and notice that G1 ×G2 = G′

1G
′
2, and that G′

1 ∩G′
2 = {(e1, e2)}. On the other

hand, if N,M are normal subgroups of G such that NM = G and N ∩M = {e}, then G ∼= N ×M , and in
practical terms, this means that every element of the group can be uniquely expressed as a product nm, with
n ∈ N,m ∈ M . That is, there is an equivalence between the internal product of groups and the external
direct product, and these two different ways of viewing the product will be useful in future chapters.

We can also generalize the notion of direct product for an arbitrary number of groups, that is, if {Gi}i∈I
is an arbitrary family of groups indexed by some set I, we define their external direct product as∏

i∈I
Gi := {(xi)i∈I |xi ∈ Gi},
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with operation given by
(xi)i∈I(yi)i∈I := (xiyi)i∈I ,

for any sequences (xi)i∈I , (yi)i∈I of ∏i∈I Gi. The direct product is a group where the identity element is just
the sequence with each identity element of the respective Gi. It is also naturally accompanied by a family
of group homomorphisms: for each index i of I, we can define the projection epimorphism that maps any
sequence in the product to its i-th element, and the inclusion monomorphism, which maps an element x of
Gi to the sequence formed by the identity elements in positions different from i and by x in the i-th position.
In the case of abelian groups, we also define the notion of external direct sum. If {Gi}i∈I is a family of
abelian groups, we denote by ⊕

i∈I
Gi ⊆

∏
i∈I

Gi

the subset of the direct product formed by all almost-zero sequences, that is, sequences (ai)i∈I that have
only a finite number of elements different from the identity element of the respective group. In this case, this
set forms a group with the same operations and identity element as the external direct product, and it is
worth noting that if I is finite, then the direct product and the direct sum are equal.

Finally, we will discuss a last group product that will be used in some applications, known as the
semidirect product. If G = NH, where N is a normal subgroup and H is any subgroup, and N ∩H = {e},
then we say that G is the internal semidirect product of N and H, and we write

G = N ⋊H = H ⋉N.

There are several examples of semidirect products, such as the dihedral group Dn which can be written
as Dn = Cn ⋊ C2, where Cn is the subgroup formed by rotations, and C2 is the subgroup formed by
reflections, or the group UTn of upper triangular matrices with non-zero determinant, which can be written
as UTn = Un ⋊Dn, where Un is the subgroup of upper triangular matrices with 1’s on the diagonals, and
Dn is the subgroup of diagonal matrices with non-zero entries. We can notice that if G = N ⋊H, given
n1h1, n2h2 ∈ G, we have

n1h1n2h2 = n1n
h1
2 h1h2,

so if we define the homomorphism φ from H to Aut(N) such that φ(h)(n) = nh, we get

n1h1n2h2 = n1φ(h1)(n2)h1h2,

where h1h2 ∈ H, and n1φ(h1)(n2) ∈ N . This observation motivates the definition of external semidirect
products. If H,N are groups such that there exists a homomorphism φ from H to Aut(N), we define the
external semidirect product as

N ⋊H := {(x, y)|x ∈ N, y ∈ H},

with the operation given by
(n1, h1)(n2, h2) = (n1φ(h1)(n2), h1h2),

and the identity element given by (eN , eH). Again, we will have an equivalence between internal and external
semidirect products, but these two interpretations have different utilities that we will use in the future.

1.2 Rings and Fields

1.2.1 Basic Concepts

The main structure of interest for this work is the so-called rings, which are sets where one can add and
multiply elements in an associative manner. Rings are also called number systems, and historically the
motivation behind their study comes from the use of number systems alternative to the integers – such as
Gaussian integers – to prove results in number theory. Formally, we have the following definition:

Definition 1.2.1 (Ring). Let (R,+) be an abelian group. We say that R is a ring if it is equipped with an
operation · : R×R 7→ R such that for any elements a, b, c of R:

6



(1) a · b · c = a · (b · c) = (a · b) · c;

(2) a · (b+ c) = a · b+ a · c;

(3) (a+ b) · c = a · c+ b · c;

(4) There exists an element 1 in R such that a · 1 = 1 · a = a.

As in the case of groups, it is immediate to verify that the multiplicative identity of the ring is unique. We
will denote a · b as ab when convenient, and if the operation · is commutative, R is said to be commutative.

Item (1) tells us that the multiplication operation of the ring is associative, (2) and (3) tell us that
the multiplication operation is distributive with respect to addition, and (4) guarantees the existence of a
multiplicative identity element2. The set Z of integers is a classical example of a commutative ring. The set
Mn(R) of n× n matrices with entries in a given ring R is also an important example of a ring, and note that
even if R is commutative, the ring Mn(R) is not commutative if n ≥ 2. This ring is also called the full matrix
algebra of n× n matrices with entries in R, for reasons that will become clear in the following sections.

Given non-zero elements a, b of R such that ab = 1, we say that a is right invertible, and similarly that b
is left invertible. If an element is invertible both on the left and on the right, then the inverses are equal, and
we say it is invertible. The set of invertible elements of a ring R is denoted by R∗ or U(R), and is usually
called the unit group of the ring, since it is indeed a group under multiplication with the identity element
given by 1. If every non-zero element of a ring is invertible, that is, if R∗ = R \ {0}, we say that R is a
division ring, and if it is also commutative, it is called a field.

Example 1.2.2. Let Zn denote the set of equivalence classes of integers modulo n. It is known that an
element x ∈ Zn has an inverse if and only if x is coprime to n, i.e., Z∗

n := {x ∈ Zn| gcd(x, n) = 1} is the
unit group of Zn, also called the multiplicative group of the ring. It is worth noting that the cardinality of
Z∗
n is given by φ(n), where φ is Euler’s totient function. If p is prime, then every non-zero element will be

invertible, and therefore Zp is a field.

Given any ring R and an abelian subgroup S of R, we say that S is a subring if S is also a ring with the
same operations as R and contains the identity element 1 of R. An abelian subgroup L is a left ideal of R if
it is closed under multiplication from the left by elements of R, that is, the product ra belongs to L for any
elements r of R and a of L. An analogous definition applies for right ideals, and if an ideal is both a left
and a right ideal, it is called bilateral (or simply an ideal), and naturally, if R is commutative, every ideal is
bilateral. It follows immediately that if L is a left ideal that contains the identity 1, then R = L, i.e., any
proper non-trivial ideal of R does not contain the identity and therefore is not a subring. A ring R is said to
be simple if its only bilateral ideals are R and {0}. A proper left ideal L is said to be maximal if, for any
other left ideal J such that L ⊆ J , it holds that J = L or J = R, and a left ideal L is said to be minimal
if the only proper left ideal of L is the trivial ideal {0}. Analogous definitions apply for right ideals and
bilateral ideals.

A homomorphism φ between two rings R,S is a group homomorphism between (R,+) and (S,+) that is
also compatible with the multiplication operations of the rings, i.e.,

φ(a · b) = φ(a) · φ(b),
φ(1R) = 1S ,

for any elements a, b of R. We will denote the set of homomorphisms between rings R and S by Hom(R,S),
and if R = S, we will denote this same set by End(R), which in this case is also a ring with the composition
of functions as the operation and addition, with the identity given by the identity function.

An extremely common construction in the study of abstract algebra is the so-called quotients. In the
case of rings, given an ideal I of a ring R, we create a new ring denoted by

R/I := {a+ I|a ∈ R}
2For this work, a ring is always assumed to be associative and with identity. It is possible to discuss non-unital or non-associative

rings, but these will not be of interest for our work.
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called the quotient ring. The elements a+ I := {a+ b|b ∈ I} are called cosets, and may also be denoted by a.
The addition and multiplication operations are defined as follows:

(a+ I) + (b+ I) := (a+ b) + I;
(a+ I)(b+ I) := ab+ I.

The additive identity of R/I is given by 0 + I = I – which will also be denoted by 0 when the context is clear
–, and the multiplicative identity is given by 1 + I. We leave it to the reader to verify that R/I is a ring if,
and only if, I is a bilateral ideal of R, i.e., we cannot take quotients over just any ideal of a given ring.

We can also consider the set of all elements that commute with all others in R, usually called the center
of the ring, and denoted by

Z(R) := {a ∈ R|∀b ∈ R : ab = ba} ⊆ R,

which naturally forms a subring of R. In this case, we can also define the commutator between two elements
of R as

[a, b] := ab− ba,

and thus we can describe the center of the ring as

Z(R) = {a ∈ R|∀b ∈ R : [a, b] = 0}.

If S ⊆ R is any subset of a ring R, we define the centralizer – also called the commutant – of S as the set of
elements of R that commute with all elements of S, i.e.,

CR(S) := {a ∈ R|∀b ∈ S : [a, b] = 0} ⊆ R,

and note that CR(S) is a subring of R.

1.2.2 Isomorphism and Correspondence Theorems

There are two extremely important results related to quotient rings, and analogous versions of these results
will also hold for modules, which will be discussed in the next section.

Theorem 1.2.3 (First Isomorphism Theorem for Rings). Let R,S be rings, and let φ ∈ Hom(R,S) be a
homomorphism between them. Then ker(φ) is a bilateral ideal of R, Im(φ) is a subring of S, and

R/ ker(φ) ∼= Im(φ).

Proof. We leave it to the reader to prove that ker(φ) is a bilateral ideal of R and that Im(φ) is a subring of
S. Define the following function:

φ : R/ ker(φ) 7→ Im(φ),
φ(r + ker(φ)) = φ(r),

and note that φ is a ring homomorphism.
Let r be an element of R and assume that φ(r + ker(φ)) = 0, so by definition φ(r) = 0, meaning r is an

element of the kernel ker(φ) of φ, which is the zero element of R/ ker(φ). Therefore, ker(φ) = {0}, implying
that φ is injective. Given any element φ(r) in the image Im(φ), where r belongs to R, note that r + ker(φ)
belongs to R/ ker(φ), and that φ(r + ker(φ)) = φ(r), so φ is surjective. From these observations, it follows
that φ is an isomorphism of rings, allowing us to conclude that R/ ker(φ) is indeed isomorphic to Im(φ). ■

The previous theorem essentially tells us that for any homomorphism φ between rings R,S, there always
exists a homomorphism φ such that the diagram

R S

R/ ker(φ) Im(φ)

π

φ

φ

ι
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commutes, that is, such that φ = ι ◦ φ ◦ π, where π(a) = a+ ker(φ), ι(b) = b denote the canonical projection
and inclusion maps, respectively. It is also important to note that if φ is injective, the previous theorem
implies that R is isomorphic to Im(φ), and in this case, we say that R is isomorphically immersed in S,
because we can identify R as a subring of S.

Now we show that we can identify the left ideals of R with the left ideals of its quotient ring with respect
to some ideal.

Theorem 1.2.4 (Correspondence Theorem for Rings). Let R be a ring, and let I be a bilateral ideal of R.
Then there is a bijection between the left ideals of R that contain I and the left ideals of R/I.

Proof. Consider the sets

LR := {L ⊆ R | L is a left ideal of R, I ⊆ L},
LR/I := {J ⊆ R/I | J is a left ideal of R/I},

and define the functions

f : LR 7→ LR/I g : LR/I 7→ LR,
f(L) = {π(x) | x ∈ L} g(J) = {x ∈ R | π(x) ∈ J},

where π is the canonical projection mapping x to x+ I. We will show that f and g are inverse functions,
and then conclude the theorem. First, we must show that the functions are well-defined. Consider L a left
ideal of R in LR, and take elements x+ I, y + I in the image of f(L) under f , so

(x+ I) − (y + I) = (x− y) + I = π(x− y) ∈ f(L),
(r + I)(x+ I) = (rx) + I = π(rx) ∈ f(L),

and it follows that f(L) belongs to LR/I . Similarly, note that if x is an element of I, then π(x) = I = 0 in
the quotient, and it follows that g(J) belongs to LR, so the functions are well-defined. Now note that if L is
an element of LR, then

g(f(L)) = g({π(x) | x ∈ L}) = L,

and similarly we have f(g(J)) = J for any J in LR/I , so f and g are inverses of each other, and it follows
that f is a bijection. This implies that the left ideals of R that contain I correspond uniquely to the left
ideals of R/I. ■

Note that in the previous proof, the function f corresponds exactly to the projection function applied
to the ideal L, and the function g corresponds to the pre-image of π with respect to some ideal J of the
quotient. It is important to observe that the correspondence can be extended to maximal ideals, that is,
each maximal left ideal of R that contains I corresponds to some maximal left ideal of R/I. In particular, if
R,S are isomorphic rings, then the previous theorem tells us that the left ideals of R correspond to the left
ideals of S. In the case of bilateral ideals, we obtain that every bilateral ideal of R/I is of the form J/I for
some bilateral ideal J in R that contains I, and conversely, J/I is a bilateral ideal of R/I for any bilateral
ideal J of R that contains I.

1.2.3 Products and Sums

There are some natural operations that can be performed with rings and their ideals. Given left ideals L, J
of R, we can define their sum as

L+ J := {a+ b | a ∈ L, b ∈ J} ⊆ R,

and note that the sum is also a left ideal. If {Li}i∈I is a family of left ideals indexed by a set I, we denote by∑
i∈I Li the set of finite sums of elements from the respective Li. We can also define the product of ideals as

LJ := {
∑
i

aibi | ai ∈ L, bi ∈ J} ⊆ R,
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where all the sums involved are finite, and in this case LJ is a left ideal of R. Therefore, for any natural
number n, we can define the left ideal L(n) as the product of L with itself n times, i.e., the set of all possible
finite sums of products of n elements from L. The following diagram illustrates the relationships between
the different operations we can perform with ideals:

L+ J

L J

L(n) JL L ∩ J LJ J (n)

where each directed arrow indicates set inclusion.
It is also possible to extend the notion of direct products of groups to rings:

Definition 1.2.5 (External Direct Product of Rings). Let {Ri}i∈I be an arbitrary family of rings indexed
by a set I. Then we define the external direct product as∏

i∈I
Ri := {(ai)i∈I | ai ∈ Ri},

with operations given by

(ai)i∈I + (bi)i∈I := (ai + bi)i∈I ,

(ai)i∈I(bi)i∈I := (aibi)i∈I ,

for any sequences (ai)i∈I , (bi)i∈I in ∏i∈I Ri. The additive identity of the direct product is given by (0i)i∈I ,
and its multiplicative identity is given by (1i)i∈I .

It is worth noting that the canonical projections that map a given sequence in the direct product to its
i-th element are ring epimorphisms, however, the canonical inclusions defined for groups are not. This follows
from the fact that, by definition, a ring homomorphism must map the identity element of the domain to the
identity element of the codomain, and this is not the case for inclusions, as they map the identity 1i of a ring
Ri to the sequence with 1i in the i-th position and 0j in the others, and this is not the identity element of
the direct product. For this reason, in this work, we do not discuss direct sums of rings, even though in some
contexts—particularly when dealing with rings that do not have a unit—such objects make sense.

Given a ring (R,+, ·), we define its opposite ring (Rop,+, ∗) as the ring with the same addition operation
as R, but where for any elements a, b in R, the product is given by

a ∗ b := b · a,

that is, multiplication in the opposite ring naturally occurs in the reverse order. From this definition, we can
demonstrate some basic facts about the opposite ring.

Proposition 1.2.6. If R is a ring and Rop is its opposite ring, then:

(1) (Rop)op and R are isomorphic rings;

(2) If R is a division ring, then Rop is also a division ring;

(3) If {Ri}i∈I is a family of rings, then (∏i∈I Ri)op and ∏i∈I R
op
i are isomorphic rings;

(4) Given a natural number n, Mn(R)op and Mn(Rop) are isomorphic rings.

Proof.
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(1) It is enough to note that if ∗1 and ∗2 are the multiplications in Rop and (Rop)op, respectively, then

a ∗2 b = b ∗1 a = ab,

so the identity function between R and (Rop)op will be a ring isomorphism.

(2) If R is a division ring, we know that any non-zero element a is invertible, so there exists b such that
ab = 1 = ba, hence b ∗ a = 1 = a ∗ b, and therefore a is also invertible in Rop.

(3) As in (1), the identity function will be a ring isomorphism. In fact, since the product of two elements in∏
i∈I Ri is given by the sequence of term-by-term products of each component, the product in the opposite

ring will be given by the sequence of term-by-term products in the opposite ring of each component.

(4) Consider the transpose application

φ : Mn(R)op 7→ Mn(Rop),
φ(A) = AT .

The function is clearly an isomorphism of abelian groups and φ(I) = I, and we can also observe that if
A,B are elements of Mn(R)op, then

φ(A ∗B) = φ(BA) = (BA)T = ATBT = φ(A)φ(B),

which implies that the rings are indeed isomorphic.
■

1.3 Modules and Vector Spaces

1.3.1 Basic Concepts

We have seen that rings generalize the notion of fields, and similarly, we are now interested in studying
objects that generalize the notion of a vector space over a field.

Definition 1.3.1 (Module). Let (M,+) be an abelian group and R a ring. We say that M is a left R-module
if there exists an operation · : R×M 7→ M such that for any elements m1,m2 ∈ M , and for any elements
α, β ∈ R, the following hold:

(1) α · (m1 +m2) = α ·m1 + α ·m2;

(2) (α+ β) ·m1 = α ·m1 + β ·m1;

(3) αβ ·m1 = α · (β ·m1);

(4) 1 ·m1 = m1.

In this case, it follows that 0m = 0 = α0 and (−1)m = −m. A right R-module is defined analogously, and
an R-module that is both left and right is called bilateral.

Items (1) and (2) tell us that · is compatible with the addition operations of the abelian group M and
the ring R, (3) tells us that the operation is associative with respect to the ring multiplication, and (4)
simply tells us that the unit of R also acts as the unit in M . The usual Euclidean space Rn is a bilateral
R-module, and it is also a left module with respect to the ring of matrices Mn(R). In general, any module
over a commutative ring is bilateral. If G is any abelian group, we can treat it as a Z-module by defining the
multiplication of an element of the group by an integer n simply as the sum of that element with itself n
times, and if n is negative, we sum the additive inverse of the element. Any ring R is a bilateral module over
itself, that is, R is always an R-bilateral module, and in particular, we can always treat a ring R as a left
R-module.
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Given an abelian subgroup N of an R-module M , we say that it is a submodule if N is also an R-module
with the same operations as M . An R-module M is called simple or minimal if its only submodules are
M and {0}. A proper submodule N of M is called maximal if, given any other submodule N ′ such that
N ⊆ N ′, we have N ′ = M or N ′ = N .

Example 1.3.2 (Simplicity of Mn(D)). Let n be a natural number and D a division ring, and consider the
ring Mn(D). Note that if I is a bilateral ideal, then we can take a non-zero matrix A from I and multiply
it on the left and right by appropriate matrices of the form Exy, that is, with entry xy equal to 1 and the
others equal to zero, so as to obtain a matrix with only one non-zero element. Then we can permute the
entries of this new matrix to obtain a diagonal matrix with only one non-zero element, and since the ring is a
division ring, we can obtain a diagonal matrix with only one non-zero entry equal to 1. Since all operations
were just multiplications by matrices in Mn(D), we have shown that I contains all the diagonal matrices of
the form Exx, and therefore contains their sum, that is, it contains the identity of Mn(D). This shows that
any proper ideal of Mn(D) is trivial, i.e., the ring in question is simple.

From the definitions given, it follows that the R-submodules of R are precisely its left ideals. Therefore,
any minimal left ideal of R is a simple R-submodule of R, and conversely, any simple R-submodule of
R is a minimal left ideal. Simple modules are objects of great interest in the study of non-commutative
algebra, because in many cases we can write a module as a composition of its simple submodules, more
precisely, as a direct sum, and throughout the next chapters, we will be interested in determining when such
a decomposition is possible.

1.3.2 Isomorphisms

Now we will consider functions φ between R-modules M,N that preserve their structure, that is, group
homomorphisms where

φ(αm) = αφ(m),

for any elements α ∈ R and m ∈ M . These functions are called left R-homomorphisms, and the set of all
such functions will be denoted by HomR(M,N). Note that this set is always an abelian group with function
addition and the additive identity given by the function that is identically zero, but it is an R-module
only when R is commutative, and the set EndR(M) = HomR(M,M) is a ring with addition and function
composition as operations.

Given an R-module M and an R-submodule N , we can also consider the quotient module M/N formed by
the cosets m+N where r(m+N) = rm+N , and in this case, we can observe that the canonical projection
mapping an element m to its coset in the quotient will be an epimorphism of modules. If R is a ring and L
is a left ideal, we can then consider the quotient R-module R/L, because L is also an R-submodule of R, but
it is worth noting that such a module will be a ring if and only if L is bilateral. Since ideals are not subrings,
we will compare them through module homomorphisms, that is, two ideals of a ring are isomorphic if there
exists a module isomorphism between them. If M,N are isomorphic as left R-modules, we will indicate this
by the notation M ∼=R N . The following theorems are analogous versions of Theorems 1.2.3 and 1.2.4 for
R-modules:

Theorem 1.3.3 (First Isomorphism Theorem for Modules). Let M,N be modules over a ring R, and
let φ ∈ HomR(M,N) be a homomorphism between them. Then ker(φ) is a submodule of M , Im(φ) is a
submodule of N , and

M/ ker(φ) ∼=R Im(φ).

■

Theorem 1.3.4 (Correspondence Theorem for Modules). Let M be a module over a ring R and N a
submodule of M . Then there is a bijection between the left R-submodules of M that contain N and the left
R-submodules of M/N . In particular, each R-submodule of M/N is of the form N ′/N for some submodule
N ′ of M that contains N , and N ′/N is a submodule of M/N for any submodule N ′ of M . ■
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It is important to emphasize that the previous correspondence also holds for maximal submodules of M :
if N ′ is a maximal submodule of M containing N , then N ′/N is a maximal submodule of M/N , and vice
versa. It is also possible to show that if M,N are isomorphic modules, then such an isomorphism induces a
ring isomorphism between EndR(M) and EndR(N).

Proposition 1.3.5. If M and N are isomorphic R-modules, then the rings EndR(M) and EndR(N) are
isomorphic.

Proof. Let φ be an R-isomorphism between M and N , and define:

ψ : EndR(M) 7→ EndR(N),
ψ(f) = φ ◦ f ◦ φ−1.

Note that ψ(idM ) = idN – where id is the identity function on the respective module –, ψ(f+g) = ψ(f)+ψ(g),
and that

ψ(f ◦ g) = φ ◦ f ◦ g ◦ φ−1

= (φ ◦ f ◦ φ−1)(φ ◦ g ◦ φ−1)
= ψ(f) ◦ ψ(g),

so ψ is a ring homomorphism. If ψ(f) = 0, this implies that for any element n ∈ N ,

(φ ◦ f ◦ φ−1)(n) = 0,

but since φ is a bijection, we have for any element m ∈ M

(φ ◦ f)(m) = 0,

and again using the fact that φ is a bijection, we obtain that f is identically zero, so ψ is injective. If g is an
element of EndR(N), we can define the function g̃ = φ−1 ◦g◦φ and note that it is clearly an R-endomorphism
of M , and that ψ(g̃) = g. The two previous observations guarantee that ψ is indeed a ring isomorphism, as
desired. ■

1.3.3 Products and Sums

Given a subset S of an R-module M , we define the submodule generated by S as the set of finite sums of
the form

RS := {
∑
j

αijmij | αij ∈ R,mij ∈ S} ⊆ M.

If S generates M , it is called a generator set, and if it is finite, we say that M is finitely generated. If S
contains only one element m, M is called cyclic, and is usually denoted by M = Rm. If L is a left ideal of R,
then the set

LS := {
∑
j

αijmij | αij ∈ L,mij ∈ S} ⊆ M

is also an R-submodule of M . If we treat R as a left R-module and if S ⊆ R is any subset, then the left
ideal generated by S is precisely the set RS, and if L is a left ideal of R generated by a single element, we
say it is a principal ideal.

Given an R-module M and a set S ⊆ M , we say that S is linearly independent if ∑ij αijmij = 0 implies
that αij = 0 for all i, j, where αij ∈ R, mij ∈ S; that is, any finite linear combination of elements of S that
results in the zero element must have all coefficients zero. A set S is said to be linearly dependent if it is not
linearly independent, i.e., there exists a finite linear combination that results in the zero element where not
all coefficients are zero. A linearly independent generating set is called a basis of the R-module, and in this
case, we say that the module is free, and it is worth noting that every ring R is a free R-module with the
basis given by the unit.
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If N1, N2 are submodules of M , we can define their sum as

N1 +N2 := {m+m′ | m ∈ N1,m
′ ∈ N2} ⊆ M,

which is also an R-submodule, and if {Mi}i∈I is a family of submodules of M indexed by a set I, we
can consider their sum ∑

i∈I Mi as the set of all finite sums of elements from Mi, which will also be an
R-submodule. Again, we can illustrate the relationship between these sets with a diagram:

N1 +N2

N1 N2

N1 ∩N2

where the arrows indicate set inclusion.
The concept of direct products of groups can be naturally extended to products of R-modules:

Definition 1.3.6 (Direct product of modules). If {Mi}i∈I is a family of R-modules indexed by a set I, we
define the external direct product ∏

i∈I
Mi := {(mi)i∈I | mi ∈ Mi} ,

with operations given by
(mi)i∈I + (ni)i∈I := (mi + ni)i∈I ,

α(mi)i∈I := (αmi)i∈I ,

for any sequences (mi)i∈I , (ni)i∈I in ∏i∈I Mi and any α ∈ R. This set is an R-module, and in this case, note
that the canonical projections and inclusions will indeed be R-module homomorphisms.

In the case of modules, we can define the external direct sum in a similar way to how we did for abelian
groups: simply consider the subset of the external direct product formed by the almost-zero sequences with
the same operations as the direct product. This set will be an R-module, and is denoted by ⊕i∈I Mi. If n is
a natural number and M is an R-module, we denote by Mn the external direct sum of M with itself n times.

The following proposition provides an extremely useful criterion for identifying sums of submodules with
external direct sums:
Proposition 1.3.7. If M is an R-module and {Mi}i∈I is a family of submodules, the following are equivalent:
(1) M = ∑

i∈I Mi and Mj ∩ (∑i ̸=jMi) = {0} for any j ∈ I;

(2) Every element m ∈ M can be uniquely written as a finite sum ∑
jmij , where each mij is an element of

the corresponding Mij ;

(3) M ∼=R
⊕

i∈I Mi.
Proof.
(1) ⇒ (2) Let m be an element of M , and suppose it can be written in two ways as a finite sum of elements
from the given ideals. We can assume that

m =
∑
j

mij =
∑
j

m′
ij ,

since we can set m′
ij

= 0 or mij = 0 if necessary to ensure the index sets are equal. Now, if ∑j(mij −m′
ij

) = 0,
it follows that:

(m′
ij −mij ) =

∑
l ̸=j

(mil −m′
il

) ∈ Mij ∩ (
∑
l ̸=j

Ml),

so by assumption, we have mij = m′
ij

, and repeating the same argument for all indices ij we conclude that
the expression for m is indeed unique.
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(2) ⇒ (3) If each element of M can be uniquely written as a finite sum of elements in the submodules of the
family, it is sufficient to consider the map that takes an element m = ∑

jmij to the sequence with entries
mij at the corresponding indices, and zero at the others. It is immediate to verify that this map is indeed an
isomorphism of R-modules, and therefore the result follows.
(3) ⇒ (1) It is enough to observe that if m is an element of M and is identified with the almost-zero sequence
(mi)i∈I by the module isomorphism, the element ∑i∈I mi which is finite is also identified with this same
sequence, hence M = ∑

i∈I Mi. Furthermore, if there is an element mj of Mj such that

mj =
∑
i ̸=j

mi ∈ Mj ∩ (
∑
i ̸=j

Mi),

then mj is identified by the isomorphism with the sequence having only one non-zero entry equal to mj , and
the sequence identified with ∑i ̸=jmi has the entry corresponding to j equal to zero, but by assumption both
must be equal, so mj = 0, as we wanted. ■

This result shows us that if each element of M can be uniquely written as a finite sum of elements from
the family of submodules, we can naturally identify M as an external direct sum of R-modules. In this case,
we write3

M =
⊕
i∈I

Mi,

and such a decomposition is called the internal direct sum, or simply the direct sum. In the case of
modules, the external and internal direct sums are isomorphic, so we can identify elements of a direct sum of
submodules both as almost-zero sequences and as finite sums. We can also observe that if L is a left ideal of
R and M = ⊕

i∈I Mi, then LM = ⊕
i∈I LMi, since certainly LM = ∑

i∈I LMi, and each LMi ⊆ Mi, hence
LMi ∩ (∑j ̸=i LMj) = {0}.

If R is a ring, then its left ideals are precisely its submodules, so if R can be written as a sum of
submodules

R =
∑
i∈I

Li,

where each Li is a left ideal, and if it holds that any element in R can be uniquely written as a finite sum of
elements in some of the left ideals Li, we can write

R =
⊕
i∈I

Li

as a direct sum of submodules, and this sum can be naturally identified with the external direct sum of the
R-modules Li.

The following result relates homomorphisms between modules expressed as direct sums and direct
products, and will be of great interest for future proofs:

Proposition 1.3.8. Let R be a ring, {Mi}i∈I a family of R-modules indexed by the set I, and N an
R-module. Then the following isomorphisms of abelian groups hold:

HomR(
⊕
i∈I

Mi, N) ∼=
∏
i∈I

HomR(Mi, N);

HomR(N,
∏
i∈I

Mi) ∼=
∏
i∈I

HomR(N,Mi).

In particular,
EndR(

⊕
i∈I

Mi) ∼=
∏
i,j∈I

HomR(Mi,Mj)

3We will abuse notation and use the same symbol to denote both internal and external direct sums of modules, and when
necessary, we will make explicit which sum we are referring to.
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is an isomorphism of abelian groups, and if HomR(Mi,Mj) = {0} for i ̸= j, we obtain that

EndR(
⊕
i∈I

Mi) ∼=
∏
i∈I

EndR(Mi)

is an isomorphism of rings, where the right-hand side is a direct product of rings.

Proof. To prove the first isomorphism, let f be an R-homomorphism between ⊕i∈I Mi and N , and consider
the following map

φ : HomR(
⊕
i∈I

Mi, N) 7→
∏
i∈I

HomR(Mi, N),

φ(f) = (f ◦ ιi)i∈I ,

where ιi denotes the canonical inclusion that maps an element mi of Mi to the sequence with only the i-th
entry non-zero and equal to mi – note that f ◦ ιi can be viewed as the restriction of f to Mi, meaning φ
simply sends f to the sequence of its restrictions to the respective components of the direct sum. From this
definition, it follows that φ is a homomorphism of abelian groups, so we now check that it is bijective. If
φ(f) = 0, it means that for every i in I, and for any mi in Mi, we have

(f ◦ ιi)(mi) = 0.

On the other hand, if (mi)i∈I is an element of ⊕i∈I Mi, we can write it as

(mi)i∈I =
∑
i∈I

ιi(mi),

where the sum on the right is finite because the sequence is almost zero, so

f((mi)i∈I) = f(
∑
i∈I

ιi(mi))

=
∑
i∈I

(f ◦ ιi)(mi) = 0,

so f is identically zero, and thus φ is injective. Now, if (fi)i∈I is an element of ∏i∈I HomR(Mi, N), we define
an R-homomorphism f such that

f((mi)i∈I) =
∑
i∈I

fi(mi) ∈ N,

for any sequence (mi)i∈I in ⊕i∈I Mi, and since each sequence is almost zero, the sum on the right-hand side
of the equation is finite. From this, we observe that (f ◦ ιi)(mi) = fi(mi), so φ(f) = (fi)i∈I , and thus φ is
surjective.

To prove the second isomorphism, let f ∈ HomR(N,∏i∈I Mi), and define

ψ : HomR(N,
∏
i∈I

Mi) 7→
∏
i∈I

HomR(N,Mi),

ψ(f) = (πi ◦ f)i∈I ,

where πi denotes the canonical projection of the direct product onto its i-th component – note that ψ is
simply the map that sends f to the sequence of its projections onto the respective components of the direct
product. Again, the definition makes it clear that ψ is a homomorphism of abelian groups, so we need to
check that it is a bijection. If ψ(f) = 0, it means that for every i ∈ I and for every n ∈ N , we have

(πi ◦ f)(n) = 0,

but on the other hand, we can write
f(n) = ((πi ◦ f)(n))i∈I ,
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so f is identically zero, and thus ψ is injective. Now, if (fi)i∈I is an element of ∏i∈I HomR(N,Mi), we define
the R-homomorphism f given by

f(n) = (fi(n))i∈I ∈
∏
i∈I

Mi,

and then it follows that πi ◦ f = fi, so

ψ(f) = ((πi ◦ f))i∈I = (fi)i∈I ,

which allows us to conclude that ψ is surjective.
The third isomorphism stated can be obtained by noting that, from the previous considerations, we have

HomR(
⊕
i∈I

Mi,
⊕
i∈I

Mi)
φ∼=
∏
i∈I

HomR(Mi,
⊕
i∈I

Mi)
ψ∼=
∏
i,j∈I

HomR(Mi,Mj),

where the elements of ∏i,j∈I HomR(Mi,Mj) are of the form

(πj ◦ f ◦ ιi)i,j∈I = ((πj ◦ f ◦ ιi)i∈I)j∈I ,

since the composition of compatible additive group isomorphisms is an isomorphism, so ρ = ψ◦ϕ is the desired
isomorphism between EndR(⊕i∈I Mi) and ∏i,j∈I HomR(Mi,Mj). Now note that if HomR(Mi,Mj) = {0}
when i ̸= j, then we have

(πj ◦ f ◦ ιi)i,j∈I = (πi ◦ f ◦ ιi)i∈I ,

since πj ◦ f ◦ ιi = 0 if i ̸= j, so ∏i,j∈I HomR(Mi,Mj) = ∏
i∈I EndR(Mi), and from this we get

EndR(
⊕
i∈I

Mi)
ρ∼=
∏
i∈I

EndR(Mi),

where ρ(f) = (πi ◦ f ◦ ιi)i∈I , and the isomorphisms are additive group isomorphisms, so to prove the
final statement, it is enough to check that they are also ring homomorphisms. The identity element in
EndR(⊕i∈I Mi) is the identity function id, so

ρ(id) = (πi ◦ id ◦ ιi)i∈I = (idi)i∈I ,

since πi ◦ ιi = idi – where idi is the identity in Mi –, so the image of the identity in the domain is the identity
in the codomain. If f, g are endomorphisms in the domain, then

ρ(f ◦ g) = (πi ◦ f ◦ ιi)i∈I

= (πi ◦ f ◦ ιi ◦ πi ◦ g ◦ ιi)i∈I

= ((πi ◦ f ◦ ιi) ◦ (πi ◦ g ◦ ιi))i∈I

= ρ(f) ◦ ρ(g),

so the isomorphism is indeed a ring homomorphism, as desired. ■

Note that if the domain of an R-homomorphism f is a direct sum of modules, then f is uniquely
determined by the restrictions (f ◦ ιi)i∈I of f on the components of the domain. Similarly, if its codomain is
a direct product of modules, then f is uniquely determined by the functions (πi ◦ f)i∈I , and if both domain
and codomain are direct sums, it follows that the elements of the form (πi ◦ f ◦ ιj)i,j determine f uniquely.
When the direct sums are finite, the isomorphism allows us to uniquely identify f with a matrix whose entry
in position ij is given by (πi ◦ f ◦ ιj)i,j . It is also worth noting that if R is a commutative ring, then the
isomorphisms above will also be R-module isomorphisms.

The ring of R-endomorphisms of a ring R is also directly related to its opposite ring.

Proposition 1.3.9. The rings EndR(R) and Rop are isomorphic.
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Proof. Define the following homomorphism of abelian groups:

φ : Rop 7→ EndR(R);
φ(a)(b) = b · a.

Note that φ(a ∗ b) = φ(b · a), so for any x ∈ R, we have

φ(b · a)(x) = x · b · a = φ(a) ◦ φ(b)(x),

and also that φ(1) is the identity function in EndR(R), so the homomorphism is a ring homomorphism. If
φ(a) = 0, we have that for any b ∈ R, b · a = 0, and since 1 is also an element of R, this implies that a = 0,
so φ is injective. Given any R-endomorphism f of R, we have that for all x ∈ R

f(x) = f(x · 1) = x · f(1) = φ(f(1))(x),

implying that φ is a ring isomorphism. ■

1.3.4 Simple Modules

Now we will prove one of the most important results about simple R-modules, known as Schur’s Lemma.

Lemma 1.3.10 (Schur’s Lemma). Let M and N be non-zero simple R-modules, and let φ : M 7→ N be an
R-homomorphism. Then φ is either identically zero or an isomorphism. In particular, the ring EndR(M) is
a division ring.

Proof. We know that the sets ker(φ) and Im(φ) are submodules of M and N , respectively. Since M and
N are simple, it follows that ker(φ) = {0} or ker(φ) = M , and that Im(φ) = {0} or Im(φ) = N . If
ker(φ) = {0}, by Theorem 1.3.3, we have that M ∼=R Im(φ), and therefore M ∼=R N , since M and N are
non-zero. Otherwise, φ is identically zero.

Now, consider the set EndR(M). We know that it is indeed a ring with addition and composition of
functions, and with the identity given by the identity function. It suffices to show that every non-zero element
is invertible. Given any element f of the ring of endomorphisms, since M is simple, there are two options:
ker(f) = {0}, and in this case, by the same argument used earlier, it follows that Im(f) = M , or ker(f) = M ,
and in this case, f = 0. Therefore, if f is not identically zero, then it is a bijection, and thus invertible, so
EndR(M) is a division ring. ■

Schur’s Lemma allows us to characterize simple modules over any ring.

Theorem 1.3.11. Let M be an R-module. The following are equivalent:

(1) M is simple;

(2) M is cyclic, and every non-zero element of M is a generator;

(3) M is isomorphic as an R-module to R/L, where L is a maximal left ideal of R.

Proof.
(1)⇒(2) Assume M is simple, and note that for any non-zero element m of M , Rm is an R-submodule
containing at least 0 and m, so Rm ̸= {0}, and by simplicity, we have Rm = M .
(2)⇒(3) Assume that M is cyclic and that every non-zero element is a generator. Again, consider a non-zero
element m of M , and define

φ : R 7→ M,

φ(r) = rm,
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and note that this function is clearly an R-epimorphism, so by Theorem 1.3.3, we have

R/ ker(φ) ∼=R M.

Now note that for any r1, r2 ∈ ker(φ),

φ(r1 − r2) = φ(r1) − φ(r2) = 0,

so r1 − r2 ∈ ker(φ), and also for any r ∈ R,

φ(rr1) = rr1m = r(r1m) = 0,

so rr1 ∈ ker(φ), and thus ker(φ) is a left ideal of R. If J is a left ideal of R such that ker(φ) ⊊ J , then there
exists r ∈ J \ ker(φ), so φ(r) = rm ̸= 0, and by simplicity, we would have M = R(rm). Thus, the restriction
φ|J = φ ◦ ι, where ι is the inclusion of J in R, is surjective, and therefore

J/ ker(φ) ∼=R M ∼=R R/ ker(φ),

so J = R, implying that ker(φ) is a maximal left ideal.
(3)⇒(1) Assume that M is isomorphic to R/L, where L is a maximal left ideal of R. If N is an R-submodule
of M , then the isomorphism shows that N is isomorphic to some submodule of R/L, so by Theorem 1.3.4,
there exists some R-submodule J of R containing L such that

N ∼=R J/L.

On the other hand, since R is a ring, we know that its R-submodules are precisely its left ideals, so J is a
left ideal containing the maximal left ideal L, implying that J = R or J = L. In both cases, this means that
N is isomorphic to R/L or to {0}, and by the arbitrariness of N , we conclude that M is simple. ■

The previous result allows us to identify maximal left ideals of a ring R with the possible simple R-modules.
In particular, since every simple R-submodule of R is a minimal left ideal, we have that each minimal left
ideal is isomorphic as an R-module to the quotient of R by some maximal left ideal. However, it is not true
that any simple R-module (not necessarily contained in R) is isomorphic to some minimal ideal of R, simply
because not all rings have minimal left ideals, but all have maximal left ideals. An example of this is the
ring Z, which does not have minimal ideals because its ideals are of the form nZ for some integer n, but
there exist simple Z-modules, e.g., Zp with p prime is simple because it is isomorphic to Z/pZ, and pZ is a
maximal ideal.

An important set in the study of modules is the so-called annihilator. Formally, if M is a left R-module
and x ∈ M , then

AnnR(x) := {a ∈ R|ax = 0} ⊆ R,

and it is immediate to check that AnnR(x) is a left ideal of R. If N ⊆ M is a subset of M , then the annihilator
AnnR(N) of N is simply the intersection of the annihilators of its elements, and it is also immediate to check
that AnnR(M) is a two-sided ideal of R. We say that an R-module M is faithful if AnnR(M) = {0}.

Now we can describe in more detail the minimal left ideals of a ring.

Lemma 1.3.12 (Brauer’s Lemma). Let L be a minimal left ideal of a ring R. Then L(2) = {0} or there
exists an idempotent element e ∈ L such that L = Re, and in this case, eRe is a division ring.

Proof. Assume that L(2) ̸= {0}, so there exists a non-zero element a ∈ L such that La ̸= {0}. However, La
is a non-trivial left ideal of L, so by the simplicity of L we have La = L, and thus we can find some element
e ∈ L such that ea = a. Now we note that

(e2 − e)a = ea− a = 0,
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so e2 −e belongs to the annihilator AnnL(a) of a in L, but on the other hand, we know that this annihilator is
a left ideal of L, which must be proper since ea = a. Therefore, by the simplicity of L, we have AnnL(a) = {0},
implying that e2 = e. Since L is simple, it follows from Theorem 1.3.11 that L = Re.

To prove the second statement, we first note that eRe is certainly a ring with unity given by e, so
it is enough to show that it is a division ring. We will construct an isomorphism from eRe to the ring
EndR(Re), and this together with Schur’s Lemma will imply the desired result. First, note that if φ is an
R-endomorphism of Re, then for any a ∈ R we have

φ(ae) = φ(a(ee)) = aφ(e),

i.e., φ is completely determined by φ(e). Furthermore, if φ,φ′ ∈ EndR(Re), and if φ′(e) = ae, then

φ(φ′(e)) = φ(ae) = aφ(e) = φ′(e)φ(e),

since eφ(e) = φ(e), we can consider the following map:

ψ : EndR(Re) 7→ eRe,

ψ(φ) = eφ(e).

The map is clearly a homomorphism of abelian groups, and from the previous considerations, we have that

ψ(φ ◦ φ′) = eφ(φ′(e)) = eφ′(e)φ(e) = (eφ′(e))(eφ′(e)) = ψ(φ)ψ(φ′),

so ψ is a ring homomorphism. It will be surjective because for any a ∈ R we can define φ ∈ EndR(Re) from
φ(e) = a, and if ψ(φ) = 0, it means that φ(e) = eφ(e) = 0, so φ is identically zero. This shows that ψ is an
isomorphism, and since Re is simple, it follows from Schur’s Lemma that EndR(Re) is a division ring, so
eRe is also a division ring. ■

The previous results allow us to conclude important facts about the ring of matrices with entries from
some division ring.
Example 1.3.13 (Semisimplicity of Mn(D)). Consider the ring of matrices Mn(D) with entries in a division
ring D and with n > 1, and note that we can write this ring as

Mn(D) = C1 ⊕ ...⊕ Cn,

where each Ci is a submodule of the matrices with the i-th column non-zero, given by

Ci = {

0 ... a1i ... 0
...

...
...

...
...

0 ... ani ... 0

 |a1i, ..., ani ∈ D}.

It is immediate to notice that the sets Ci are indeed left ideals of Mn(D), each naturally isomorphic to Dn

as a Mn(D)-module, however we can also observe that these ideals are minimal. Indeed, take any left ideal
L contained in some Ci, and assume that there exists a non-zero element y in L, i.e., there exists an index j
such that the entry yji ̸= 0 in the matrix y. Now take any element x ∈ Ci, and note that the matrix

M =


0 ... x1iy

−1
ji ... 0

...
...

...
...

...
0 ... xniy

−1
ji ... 0


is such that My = x, and since L is a left ideal, it follows that My ∈ L, so x ∈ L, which implies that Ci = L,
and therefore Ci is a minimal left ideal. This allows us to conclude that the set of matrices can be written as
a direct sum of minimal left ideals, something we will define in the future as semisimplicity. Since C(2)

i ̸= {0},
Brauer’s Lemma guarantees that these ideals will be of the form Mn(D)E, where E is some idempotent
matrix, and in the case, it suffices to take for any Ci the matrix Eii, which is certainly idempotent and
belongs to Ci, so indeed we have

Mn(D) = Mn(D)E11 ⊕ ...⊕Mn(D)Enn.
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1.3.5 Vector Spaces and Zorn’s Lemma

The previous example also illustrates an interesting fact: a ring R being simple does not necessarily imply
that it is simple as an R-module. In fact, we saw earlier that Mn(D) is a simple ring, but the previous
example shows that, when viewed as a module over itself, this ring is not simple for the cases where n > 1,
as it can be written as a direct sum of n distinct simple submodules. The decomposition in this example
is relatively simple, yet it captures the main motivation behind the results in the upcoming chapters: to
describe rings as a direct sum of simple objects in an explicit manner. It is also possible to characterize
all the simple submodules of the matrix ring, something that will be particularly useful for applications of
Wedderburn’s Theorem.

Example 1.3.14 (Uniqueness of Simple Submodules of Mn(D)). Let R = Mn(D) be the ring of matrices
over a division ring D, and consider a simple R-module M . By Theorem 1.3.11, it follows that M = RX,
where X is a non-zero matrix in M , and since RX ̸= 0, there certainly exists some non-zero matrix A in R
such that AX ̸= 0. Fix a column j of A with some non-zero entry, and consider the map φ from M to Dn

that sends an element BX of M to the j-th column of B, i.e., φ(BX) = Bej , where ej is the vector with one
in the j-th entry and zero elsewhere. It follows that this map is a non-zero R-homomorphism, and from the
previous example, we saw that Dn is a simple R-module, so by Schur’s Lemma, φ must be an R-isomorphism,
thus M ∼=R D

n. This shows us that, up to isomorphism, Dn is the only simple Mn(D)-module.

We mentioned that modules generalize the notion of a vector space, as a vector space is nothing more
than a module over a field, but this generalization causes these objects to lose several useful properties.
Below we list some properties that are generally false for modules over rings but are always true for vector
spaces over fields:

• Every linearly independent set can be extended to a basis;

• Every generating set contains a basis;

• Every element of a linearly independent set is a linear combination of the others;

• Every submodule of a free module is free.

We will now state without proof an important result for future sections. To do this, we remind the reader
that given a set equipped with a binary relation between its elements, we say it is a partially ordered set –
also called a poset – if the relation is reflexive, antisymmetric, and transitive, and we say that a subset is a
chain if it is totally ordered, i.e., every pair of elements is comparable.

Lemma 1.3.15 (Zorn’s Lemma). Let (X,≤) be a poset where every chain C ⊆ X has an upper bound in
X, that is, an element x in X such that for every y in C, y ≤ x. Then X has a maximal element.

Zorn’s Lemma is an extremely powerful tool for proving various results in linear algebra, and it will be
particularly useful for demonstrating basic properties of semisimple modules and rings. Below, we provide an
example of using Zorn’s Lemma to demonstrate that every ideal in a ring is contained in some maximal ideal.

Example 1.3.16 (Existence of Maximal Ideals). Let R be a ring, and fix a left ideal L. Define the set

F = {J ⊆ R | L ⊆ J, J is a left ideal of R}.

The set in question is a poset with the inclusion relation ⊆, so we take a chain C in F . We can define
J̃ = ⋃

J∈C J , and we claim that this element is an upper bound for C. In fact, first note that L ⊆ J̃ by
definition, and if a, b ∈ J̃ , there exist J1, J2 ∈ C such that a ∈ J1, b ∈ J2, and assuming without loss of
generality that J1 ⊆ J2, we have a, b ∈ J2, so a+ b ∈ J2, implying that J̃ is closed under addition. Now, if
a ∈ R and b ∈ J̃ , a similar argument shows that ab ∈ J̃ , so J̃ belongs to F , and then by Zorn’s Lemma, it
follows that there exists a maximal element in F , which in this case will be exactly a maximal left ideal of R
containing L. A similar argument can be made for right ideals and two-sided ideals.

21



1.4 Algebras

The main object of study in this work is what are called algebras over fields, which are nothing more than
vector spaces with some notion of bilinear product between their elements. Below is its formal definition.

Definition 1.4.1 (Algebra). Let (A,+) be an abelian group and F a field. We say that A is an F-algebra if
there exist operations · : F × A 7→ A and ∗ : A × A 7→ A such that:

(1) (A,+, ·) is a vector space over F;

(2) (A,+, ∗) is a ring4;

(3) For any α in F and A,B in A: α ·A ∗B = (αA) ∗B = A ∗ (αB).

Items (1) and (2) tell us that an algebra is nothing more than a vector space with respect to a field F that
is also a ring, and (3) tells us that the multiplication between elements of the ring is compatible with scalar
multiplication from F, and therefore all the constructions and results seen so far about rings and modules
also apply.

The set Mn(C) of n× n matrices with complex entries is a ring with respect to the matrix addition and
multiplication operations, and its unit is the identity matrix. Furthermore, this set also has the structure of
a C-vector space with scalar multiplication by elements of C, so it is a C-algebra. We can also consider the
term-by-term multiplication operation of matrices, known as the Schur product, defined as (A◦B)ij = AijBij
for matrices of the same size, and we can observe that Mn(C) is also a C-algebra with respect to the Schur
product, with the unit given by the matrix with all elements equal to one.

Given an algebra A over a field F, we will denote its unit by the symbol E. A subset B of A that is
simultaneously a subspace and a subring is called a subalgebra, meaning that B is a subspace of F that is
closed under the matrix product and contains the unit E of A. The center Z(A) of an algebra is always
a subalgebra, simply due to the compatibility between the algebra’s operations: if A commutes with all
elements of A, then certainly αA also commutes for any α ∈ F. A function φ between F-algebras is called a
homomorphism if it is simultaneously a homomorphism of F-vector spaces and a homomorphism of rings.

We say that a set M is an A-module if M is a module over the ring A, and in this case, we can provide a
structure of F-vector space to M by defining the product

αm := (αE)m,

for any α ∈ F,m ∈ M , and it follows that

(αX)m = α(Xm) = X(αm)

for any X ∈ A, and therefore an A-homomorphism is also an F-homomorphism.
The notions of direct sums and direct products naturally translate into the context of algebras, but in

this case, we must make an additional effort to clarify which type of sum or product we are referring to. In
this work, a direct sum of algebras over a field F will always refer to a direct sum of F-vector spaces, that is,
a direct sum of F-modules, and a direct product of algebras will refer to an external direct product of rings,
since each algebra is also a ring.

An algebra A over a field F that is an F-vector space of finite dimension d is said to be a finite-dimensional
algebra. In this case, given that we fixed a basis {A1, ..., Ad} for A, we have

AiAj =
d∑

k=1
ckijAk,

4Many other works related to the study of algebras also study algebras that do not necessarily have a unit, and in this case,
the algebras described here would be called unital.
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for any i, j ∈ [d] := {1, ..., d}, where ckij ∈ F. Therefore, note that given elements A,B ∈ A written as
A = ∑

i αiAi and B = ∑
j βjAj , we have

AB = (
∑
i

αiAi)(
∑
j

βjAj)

=
∑
i,j

αiβjAiAj

=
∑
ijk

αiβjc
k
ijAk,

that is, if we fix a basis, the constants {ckij}ijk completely determine the algebra A, and they are usually
called the structural constants of A.
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2 Semisimplicity
Now we will focus on studying what are called semisimple rings and modules. This concept is of great
importance in various areas of mathematics and physics, such as in the study of group representations and
Lie algebras, and the structure of semisimple algebras will be useful in proving several results for graphs and
optimization programs. In this chapter, we will present the theory of semisimplicity in its most general form,
and later focus on applications in the following chapters. But before that, we will briefly discuss one of the
motivations behind our study.

One of the most famous results in classical linear algebra is the Primary Decomposition Theorem, which
tells us that given an endomorphism of vector spaces f on a space V over a field F, it is always possible to
decompose the space as

V = W1 ⊕ . . .⊕Wk,

where each Wi is a subspace invariant under f , and in particular, it will be a generalized eigenspace. That is,
if we write the minimal polynomial of f as

mf (t) = p1(t)r1 · . . . · prk
k (t),

with each pi irreducible, then Wi := ker(pri
i (f)). A decomposition of the space into a direct sum of f -invariant

subspaces naturally gives us a block-diagonalization of f : simply choose a basis for each Wi and then take
the union of such bases. In the context of matrices with complex entries, the theorem guarantees that it
is always possible to find a block-diagonal basis for a given matrix, and much of basic linear algebra is
dedicated to understanding the form of these blocks. For example, over the complex numbers, it will always
be possible to triangularize the blocks of the primary decomposition of a matrix, so that each block has a
diagonal component and a nilpotent component, and with a little more effort, we can obtain the famous
Jordan canonical form. In the case of diagonalizable matrices, their primary decomposition is exactly their
spectral decomposition, meaning that each block will have size 1, and its only entry will be the eigenvalue
associated with the respective eigenspace.

We can then ask ourselves how to generalize these results: if we now have a set of matrices, is it always
possible to find a basis that simultaneously puts them in a block-diagonal form? We will see that the answer
to this question is closely connected with the notion of semisimplicity.

2.1 Semisimple Modules

Given any R-module M , we say that M is semisimple if it can be written as a direct sum of simple R-modules.
We are interested in characterizing semisimple modules, and to do this, we will first prove the following
auxiliary result:

Lemma 2.1.1. Let M be an R-module such that every submodule N of M is a direct summand, that is,
there exists a submodule N ′ of M such that M = N ⊕ N ′. Then every non-zero submodule of M has a
simple submodule.

Proof. Let M be an R-module as described in the statement, and let N be a non-zero submodule. The
idea of this proof is to use the existence of a maximal left ideal of R to derive a contradiction with the
non-existence of a simple submodule of N . To do this, first fix a non-zero element x ∈ N , and consider the
following map:

φ : R 7→ Rx;
φ(a) = ax.

It is immediate to check that φ is an epimorphism of R-modules, and it is also worth noting that the kernel
of φ is precisely the annihilator AnnR(x) of x in R, and this is properly contained in R since x ̸= 0. Since
AnnR(x) is a proper left ideal of R, by Example 1.3.16, there exists a maximal left ideal L containing it.
We then note that since L is maximal in R, by the Correspondence Theorem 1.3.4, L/AnnR(x) is maximal
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in R/AnnR(x), and since R/AnnR(x) is isomorphic as an R-module to Rx, it follows that the image Lx of
L/AnnR(x) under the isomorphism is a maximal submodule of Rx.

Now we will use the hypothesis to find a direct sum decomposition of Rx in terms of Lx. By hypothesis,
we have M = Lx⊕ L′, where L′ is some submodule of M , so for any a ∈ R, there exist unique b ∈ L, y ∈ L′

such that
ax = bx+ y,

thus y can be uniquely written as
y = ax− bx ∈ L′ ∩Rx,

implying that Rx = Lx⊕ (Rx ∩ L′). We can now use the maximality of Lx to show that Rx ∩ L′ is simple.
Indeed, assume it is not, then there exists a proper non-trivial submodule of Rx ∩ L′, and since this is also a
submodule of Rx, it follows that it must be of the form Sx, for some non-trivial left ideal S of R. Consider
the following chain of inclusions:

Lx ⊊ Lx+ Sx ⊊ Lx+ (Rx ∩ L′) = Rx,

and note that this implies Lx + Sx is a proper submodule of Rx that properly contains the maximal
submodule Lx, which clearly contradicts the maximality of Lx. Thus, we conclude that Rx∩L′ is simple, as
desired. ■

The previous result, together with Zorn’s Lemma, allows us to prove the following characterization of
semisimple modules:

Theorem 2.1.2. Let M be an R-module. The following are equivalent:

(1) M is a direct sum of simple R-modules;

(2) M is semisimple;

(3) Every R-submodule of M is a direct summand.

Proof.
(1)⇒(2) Assume that M = ∑

i∈I Mi, where each Mi is a simple R-module, and consider the set

F = {J ⊆ I |
∑
j∈J

Mj is a direct sum}.

Note that F ̸= ∅, since each Mi ∈ F , and that (F ,⊆) is a partially ordered set (poset). Let C ⊆ F be a
chain, and note that ⋃J ∈C J ∈ F is an upper bound for C, that is, every chain has an upper bound in F . By
Zorn’s Lemma, there exists a maximal Jm ∈ F , and note that given any Mi, the intersection Mi ∩

∑
j∈Jm

Mj

is a submodule of Mi, so

Mi ∩
∑
j∈Jm

Mj = Mi or Mi ∩
∑
j∈Jm

Mj = {0},

because Mi is simple. Assume that there exists some i ∈ I such that the second case occurs, and note then
that Jm ∪ {i} ∈ F is a set of indices that results in a direct sum and strictly contains the maximal set
Jm, which contradicts the definition of this set. Thus, every Mi is contained in ∑j∈Jm

Mj , and therefore
M = ∑

j∈Jm
Mj , that is, M is semisimple.

(2)⇒(3) Assume that M = ⊕
i∈I Mi, where each Mi is a simple submodule. Let N be a submodule of M ,

and consider the set
F = {J ⊆ I | N +

∑
j∈J

Mj is a direct sum}.

Analogously to the previous step, it is immediate to observe that (F ,⊆) is a poset. Note that F is non-empty,
because for each Mi, either Mi ∩ N = {0} or Mi ∩ N = Mi (since Mi is simple), and if for all i, we have
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Mi ∩N = Mi, then M = N , and there is nothing to prove. Thus, we can assume that there exists at least
one i such that Mi ∩N = {0}, and therefore N +Mi is a direct sum. Let C ⊆ F be a chain, and note that⋃

J ∈C J ∈ F is an upper bound for C in F , and then by Zorn’s Lemma, there exists a maximal Jm ∈ F in
F . Note that if there exists Mi such that Mi ∩ (N + (⊕j∈Jm

Mj)) = {0}, then Jm ∪ {i} ∈ F , contradicting
the maximality of Jm in F . Therefore, all the Mi’s are contained in the sum, so we have

M = N ⊕ (
⊕
j∈Jm

Mj),

and thus N is a direct summand.
(3)⇒(1) Assume that every submodule of M is a direct summand, and consider Ns the submodule of M
formed by the sum of all the simple submodules of M . By hypothesis, there exists a submodule N ′ such that

M = Ns ⊕N ′.

If N ′ ̸= {0}, Lemma 2.1.1 guarantees that there exists a simple submodule of N ′, which contradicts the
definition of Ns, so N ′ = {0}, and therefore M is semisimple. ■

The previous proposition shows us that semisimple R-modules are precisely those that, in a sense, behave
similarly to vector spaces: given any submodule, it is possible to find a complementary module. Semisimplicity
also behaves well with respect to submodules and quotients, as we can verify below:

Corollary 2.1.3. Every submodule and every quotient of a semisimple R-module is semisimple.

Proof. Let M = ⊕
i∈I Mi be a semisimple R-module, with each Mi simple, and take any submodule N .

Consider the R-epimorphism projection π : M 7→ M/N , and note that for any m ∈ M , there exist unique
mij such that

m =
∑
j

mij ,

so π(m) = ∑
π(mij ) uniquely, and hence M/N = ∑

i∈I π(Mi), which implies by the previous proposition
that M/N is semisimple. From the previous proposition, we also know that there exists a submodule N ′

such that M = N ⊕N ′, so it follows that M/N ′ ∼= N , and thus N is isomorphic to a quotient, and therefore
is semisimple as well. ■

Now we will formalize a way to identify endomorphisms of semisimple modules with matrices, which was
briefly mentioned right after the proof of Proposition 1.3.8.

Proposition 2.1.4. Let M be a module over a ring R, and consider Mn, where n is a natural number.
Then EndR(Mn) and Mn(EndR(M)) are isomorphic rings.

Proof. Let f ∈ EndR(Mn), and let πi, ιj be the canonical projection and inclusion maps onto the i-th and
j-th copies of M , respectively, where πi ◦ f ◦ ιj ∈ EndR(M). It is worth noting that, although they are copies
of M , the functions πi ◦ f ◦ ιj are generally not equal. Observe that if m = (m1, . . . ,mn) is an element of
Mn, then

f(m) = (
n∑
j=1

(π1 ◦ f ◦ ιj)(mj), . . . ,
n∑
j=1

(πn ◦ f ◦ ιj)(mj)),

so if we identify m with a column vector, we have

f(m) =

π1 ◦ f ◦ ι1 π1 ◦ f ◦ ι2 . . . π1 ◦ f ◦ ιn
...

...
...

...
πn ◦ f ◦ ι1 πn ◦ f ◦ ι2 . . . πn ◦ f ◦ ιn

 ·

m1
...
mn

 .
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Therefore, if we consider the map

φ : EndR(Mn) 7→ Mn(EndR(M)),

φ(f) =

π1 ◦ f ◦ ι1 π1 ◦ f ◦ ι2 . . . π1 ◦ f ◦ ιn
...

...
...

...
πn ◦ f ◦ ι1 πn ◦ f ◦ ι2 . . . πn ◦ f ◦ ιn

 ,
it is immediate to observe that it is a group homomorphism, and if f, g ∈ EndR(Mn), the previous observations
guarantee that φ(f ◦ g) = φ(f) · φ(g), and since φ(id) = I, it follows that we have a ring homomorphism. If
φ(f) = 0, as we saw in Proposition 1.3.8, f is uniquely determined by the entries of the matrix φ(f), so
f = 0. Given any matrix M in Mn(EndR(M)), observe that there exists a unique R-homomorphism f such
that πi ◦ f ◦ ιj = Mij , so φ(f) = M . Therefore, we conclude that φ is a bijection, and thus

EndR(Mn) ∼= Mn(EndR(M))

are isomorphic rings. ■

2.2 Semisimple Rings

2.2.1 Ideals and Submodules

In this section, we are interested in proving structural theorems for semisimple rings, with the goal of
obtaining useful descriptions of the various algebraic components of a ring. In particular, we will prove
the Wedderburn and Artin theorems for semisimple rings, and then we will discuss their consequences and
ramifications in detail.

Given a ring R, we say that it is semisimple if it is a semisimple R-module. That is, semisimple
rings are precisely those that, when viewed as modules over themselves, can be written as a direct sum of
simple R-submodules, which in this case are precisely their minimal left ideals. We will now prove a basic
characterization for these rings.

Proposition 2.2.1. A ring R is semisimple if and only if every R-module is semisimple.

Proof. Let R be a ring, and note that since R is an R-module, the reverse of the statement follows immediately.
Now assume that R is semisimple and take any R-module M . Consider the following R-homomorphism:

φ :
⊕
m∈M

R 7→ M ;

φ((rm)m∈M ) =
∑

m∈M,rm ̸=0
rm ·m.

Note that for any x ∈ M , we can take the sequence (δxm)m∈M , where δxm = 1 if and only if m = x, and
observe that φ((δxm)m∈M ) = x, so φ is surjective. Therefore, we have⊕

m∈M
R/ ker(φ) ∼=R M,

and since the direct sum of semisimple modules is semisimple, we conclude that M is isomorphic to a quotient
of a semisimple module. Therefore, by Corollary 2.1.3, it follows that M is semisimple. ■

Semisimplicity in rings also implies a stronger version of Brauer’s Lemma.

Proposition 2.2.2. Let R be a semisimple ring. Then every left ideal of R is of the form Re, where e2 = e is
an idempotent element. In particular, every bilateral ideal is a ring of the form Re, with the unit e belonging
to the center of R.
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Proof. Let L be a left ideal of R, and since R is semisimple, we know from Theorem 2.1.2 that there exists
another left ideal J such that R = L⊕ J . Let e ∈ L and x ∈ J such that e+ x = 1. For any a ∈ L, it follows
that

a = ae+ ax,

which implies that
ax = a− ae ∈ J ∩ L,

but since J ∩ L = {0}, it follows that ax = 0 and a = ae. This implies that e2 = e, and also that L = Re,
and a similar result holds for right ideals. Now assume that I is a bilateral ideal. We know that there are
idempotent elements e, e′ such that

I = Re = e′R,

so it follows that ee = e′e and that e′e = e′e′. But since both are idempotents, it follows that e = e′e = e′,
and hence I = Re = eR. Note that if x ∈ I, there exist a1, a2 ∈ R such that

x = a1e = ea2

so
xe = a1e = x and ex = ea2 = x,

hence xe = ex, implying that e commutes with every element of I, i.e., I is a ring with unit e. If we take any
element a ∈ R, we have

ae = (ae)e = eae and ea = e(ea) = eae,

so ae = ea, meaning that e is an element of the center of R, as required. ■

Now we show that the decomposition into simple submodules of a ring is always finite.

Proposition 2.2.3. If R is a semisimple ring, then it can be written as a finite direct sum of simple
submodules. Moreover, every simple R-module is isomorphic to one of the direct summands of R.

Proof. Let R = ⊕
i Li, where each Li is a simple R-submodule. Note that, by definition, there exist unique

ri1 , ..., rim ∈ Lij such that
1 = ri1 + · · · + rim .

Therefore, any element x ∈ R can be uniquely written as

x = xri1 + · · · + xrim ,

and since each Lij is an R-submodule of R, we have xrij ∈ Lij , which implies that R = ⊕m
j=1 Lij .

Now let M be a simple R-module. We know that any non-zero element m of M satisfies M = Rm, so
the R-homomorphism φ : R 7→ M given by φ(a) = am is non-zero. On the other hand, from Proposition
1.3.8, we have

{0} ≠ HomR(R,M) ∼=
m∏
i=1

HomR(Li,M),

where the isomorphism is between abelian groups. But note that this implies that there exists some i such
that HomR(Li,M) ̸= {0}, so by Schur’s Lemma, it follows that M ∼=R Li. ■
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2.2.2 Wedderburn’s Theorem

An immediate consequence of the previous proposition is that there are finitely many isomorphism classes of
simple modules in a semisimple ring. If we write a semisimple ring R as

R =
l⊕

i=1
Li,

where each Li is an R-simple submodule, we can then consider the submodules

Ri :=
⊕

L∼=RLi

L ∼=R L
di
i

which group all the di isomorphic summands to Li in the direct sum of R, for some non-negative integer di.
Thus, each Ri is a left ideal of R that is semisimple, and we can write

R =
m⊕
i=1

Ri ∼=R

m⊕
i=1

Ldi
i ,

where Li ̸∼=R Lj if i ̸= j. We can also note that each Ri is a bilateral ideal of R. Indeed, if i ̸= j, we take

RiRj =
⊕

L∼=RLj

RiL =
⊕

L∼=RLj

⊕
L′∼=RLi

L′L.

We know that both L,L′ are simple submodules, so if there exist a ∈ L′, b ∈ L such that ab ̸= 0, the map
sending any a ∈ L′ to ab ∈ L would be a non-zero R-homomorphism, and therefore by Schur’s Lemma, L and
L′ would be isomorphic, which contradicts the fact that i ̸= j, hence L′L = {0}, implying that RiRj = {0}.
From this, it follows that

Ri ⊆ RiR = Ri

m⊕
j=1

Rj =
m⊕
j=1

RiRj = RiRi ⊆ Ri,

where the last inclusion follows from the fact that Ri is a left ideal of R, so RiR = Ri, implying that Ri is a
bilateral ideal. From this and by Proposition 2.2.2, it follows that each Ri is a ring with a unit given by
some idempotent ei belonging to the center of R, and since RiRj = {0} for i ̸= j, we have that eiej = 0.

Since R is the direct sum of the Ri’s, we have that the unit of R can be uniquely written as

1 = e1 + · · · + em.

Moreover, if we take elements r, s ∈ R, they can be uniquely decomposed as r = r1 + · · · + rm and
s = s1 + · · · + sm, with ri, si ∈ Ri, so their multiplication is given by

rs = r1s1 + · · · + rmsm,

since the products of the form risj with i ̸= j will be zero. Therefore, the canonical map that sends r to
(r1, . . . , rm) — that is, which identifies the internal direct sum of submodules with the external direct sum —
will also be a ring isomorphism, since the unit 1 will be mapped to (e1, . . . , em), which is precisely the unit
of the direct product of the Ri. This shows that the ring R is isomorphic to an external direct product of
the rings Ri, and since each ring corresponds to a bilateral ideal of R, we say that

R =
m∏
i=1

Ri,

that is, we say that R is equal to the direct product of the Ri. This is one possible definition of internal
direct products in rings, but since its construction is somewhat specific to the case of semisimple rings, we
chose to introduce it only now.

This discussion leads us to the proof of Wedderburn’s theorem.
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Theorem 2.2.4 (Wedderburn’s Theorem). Let R be a semisimple ring written as

R =
m⊕
i=1

Ri,

where Ri ∼=R Ldi
i , each Li is a simple submodule, and Li ̸∼=R Lj if i ̸= j. Then each Ri is a simple ring

isomorphic to Mdi
(Di), where Di is a division ring, and we also have that

R ∼=
m∏
i=1

Mdi
(Di),

that is, R is isomorphic to a direct product of matrix rings over division rings. Conversely, every direct
product of matrix rings over division rings is semisimple.

Proof. By Propositions 1.3.5 and 2.1.4, we have that

EndR(Ri) ∼= EndR(Ldi
i ) ∼= Mdi

(EndR(Li))

are isomorphic rings, so

Ri ∼= (Rop
i )op

∼= (EndR(Ri))op

∼= (Mdi
(EndR(Li)))op

∼= Mdi
(EndR(Li)op),

where the second and last isomorphisms follow from Propositions 1.2.6 and 1.3.9, and the ring Di :=
EndR(Li)op is a division ring because Li is a simple module. Therefore, the ring Ri is isomorphic to Mdi

(Di)
for each i, and so it is a simple ring. Proposition 1.3.8 gives us that

EndR(R) = EndR(
m⊕
i=1

Ri) ∼=
∏
i,j

HomR(Ri, Rj),

where the isomorphisms are of abelian groups, and by assumption, Li ̸∼= Lj if i ≠ j, but note that the ideals
Li, Lj are simple R-modules and not isomorphic, so by Schur’s Lemma, any R-homomorphism between Li, Lj
is identically zero, i.e., HomR(Li, Lj) = {0}, which also implies that HomR(Ri, Rj) = {0}, so

EndR(R) ∼=
m∏
i=1

EndR(Ri) ∼=
m∏
i=1

Mdi
(EndR(Li)),

where the isomorphisms are now of rings. Now, if we proceed similarly to what was done for each Ri, we
obtain

R ∼= (Rop)op

∼= (EndR(R))op

∼= (
m∏
i=1

Mdi
(EndR(Li)))op

∼=
m∏
i=1

(Mdi
(EndR(Li)))op

∼=
m∏
i=1

Mdi
(EndR(Li)op)

=
m∏
i=1

Mdi
(Di).
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Thus, R is isomorphic to a direct product of matrix rings over division rings, where each term of the product
is isomorphic to the corresponding Ri in the expression of R as a direct sum. Conversely, if R is a direct
product of matrix rings over division rings, we know from Example 1.3.13 that each element of the product
is semisimple, and since it is a direct product, each element will be a bilateral ideal, so we can identify R
also as a direct sum of semisimple submodules, and from this, it follows that R is semisimple. ■

Wedderburn’s theorem has several relevant implications for the study of rings and algebras, and we will
dedicate the remainder of this chapter to discuss these consequences in detail. The most immediate and
perhaps most important implication is precisely the guarantee that we can identify a semisimple ring R
with a direct product of simple rings Ri, each of which is a bilateral ideal of R isomorphic to a matrix ring
over a division ring. This decomposition of a semisimple ring as a product of simple rings Ri is commonly
called the Wedderburn decomposition of the ring. We also observe that the theorem guarantees that it is not
necessary to distinguish between left or right semisimplicity: matrix rings over division rings are semisimple
both on the left (with minimal left ideals given by column matrices Ci described in Example 1.3.13) and on
the right (with minimal right ideals given by row matrices defined analogously). That is, a ring is semisimple
on the right if and only if it is semisimple on the left.

Now we show that the Wedderburn decomposition is unique.

Proposition 2.2.5 (Uniqueness of the Wedderburn Decomposition). If R is a semisimple ring with Wedder-
burn decomposition given by

R =
m∏
i=1

Ri,

where each Ri is a simple ring, then this decomposition is unique up to permutation of the Ri, where the
parameters m, di are uniquely determined by R.

Proof. Assume that

R =
m∏
i=1

Ri =
m′∏
j=1

R′
j ,

and note that
Ri ⊆ RiR = RiRi ⊆ Ri,

so RiR = Ri for any i. On the other hand, we also have

RiR =
m′∏
j=1

RiR
′
j ,

but since each R′
j is also a bilateral ideal of R, it follows that RiR′

j is a bilateral ideal of Ri, and since Ri is
simple, this implies that RiR′

j = Ri or RiR′
j = {0}. Since RiR = Ri, it follows that there exists exactly one

index j such that RiR′
j = Ri, and if we now repeat the process for j, we conclude that

Ri = RiR
′
j = R′

j ,

so for each i there exists a unique j′ such that Ri = R′
j , and therefore the Wedderburn decomposition of R is

unique up to permutation of the Ri’s, and consequently the parameters Ri, di,m are uniquely determined by
R. ■

The main consequence of the Wedderburn decomposition for this work is the structure of the idempotent
elements of a semisimple ring R. If e ∈ R is an idempotent element belonging to the center of R, we say
it is a central idempotent, and if ei, ej are distinct idempotents of R such that eiej = 0, we say they are
orthogonal. We say that an idempotent e ∈ R is primitive (or minimal) if it cannot be written as the sum of
non-zero orthogonal idempotents distinct from R, and an idempotent is said to be centrally primitive if it is
central and cannot be written as the sum of non-zero orthogonal central idempotents.

With this new terminology, we obtain the following corollary:
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Corollary 2.2.6. Let R be a semisimple ring with Wedderburn decomposition given by

R =
m∏
i=1

Ri.

Then there exist unique orthogonal centrally primitive idempotents e1, . . . , em such that

1 = e1 + · · · + em.

Moreover, for each ei, there also exist unique orthogonal primitive idempotents ei1, . . . , eidi
such that

ei = ei1 + · · · + eidi
.

Proof. The uniqueness of the idempotents follows from the uniqueness of the Wedderburn decomposition,
and we have seen in previous discussions that the idempotents e1, . . . , em such that Ri = Rei are indeed
orthogonal and central, so it remains to show that they are centrally primitive. Fix i and assume that
ei = e′

i + e′′
i , where e′

i, e
′′
i are non-zero orthogonal central idempotents, i.e., we can write the ring Ri as

Ri = Rei = Re′
i ⊕Re′′

i ,

where the sum is direct because the idempotents are orthogonal, but note that since e′
i and e′′

i are central,
the submodules Re′

i will be proper non-trivial bilateral ideals of Ri, contradicting the simplicity of Ri, so
each ei is indeed centrally primitive.

We recall that by definition each Ri is of the form

Ri =
⊕

L∼=RLi

L ∼=R L
di
i ,

that is, Ri is a semisimple ring, and its di left ideals are all isomorphic to Li. By Proposition 2.2.2, it follows
that for each left ideal of R it is of the form Reij for some idempotent eij , and by a similar argument to the
one made earlier, it follows that these idempotents are orthogonal and primitive. Therefore, since ei is the
unit in Ri, we have that

ei = ei1 + · · · + eidi
,

as we wanted. ■

Thus, we can describe the case where R is a commutative semisimple ring.

Corollary 2.2.7. Every commutative semisimple ring R is a finite direct product of fields. Conversely, every
finite direct product of fields is semisimple.

Proof. By Wedderburn’s theorem, we can write

R ∼=
m∏
i=1

Mdi
(Di),

where Di is a division ring. Since R is commutative, it follows that each Mdi
(Di) must also be commutative,

but since it is a matrix ring, this is only possible if di = 1. Each M1(Di) is naturally isomorphic to Di as a
ring, so each Di is a commutative division ring, and therefore it is a field. Conversely, if R is a finite direct
product of fields, note that each field can be seen as a matrix ring of size 1 × 1 with entries in the field, so it
is semisimple, which implies that R is also semisimple. ■
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2.2.3 Simple Rings and the Artin-Wedderburn Theorem

Wedderburn’s theorem gives us a classification of semisimple rings, and a natural question we might ask is:
is it also possible to characterize simple rings? To address this, we first need to introduce the concept of
Artinian rings. Given a ring R, we say that it is left Artinian if any descending chain of left ideals stabilizes,
that is, for left ideals {Lj}j such that

L1 ⊇ L2 ⊇ · · · ⊇ Ln ⊇ Ln+1 ⊇ . . . ,

there exists an index k such that for all j ≥ k, Lj = Lk. This is equivalent to saying that every non-empty
family of left ideals of R has a minimal element. It is also interesting to note that if L is a non-zero left ideal
of R, then it must contain some minimal left ideal; otherwise, we could construct a non-empty family of left
ideals that does not have a minimal element.

At first glance, the notion of Artinian rings may seem somewhat arbitrary, but as is often the case in
abstract algebra, this term merely formalizes a property of familiar structures such as finite-dimensional
algebras. Every finite-dimensional algebra is an Artinian ring simply because every left ideal is a subspace,
so any strict chain of ideals is a chain of subspaces with decreasing dimension, and since the dimension is
finite, this chain certainly stabilizes. A counterexample is the ring of integers Z, as the chain

2Z ⊋ 4Z ⊋ · · · ⊋ 2kZ ⊋ . . .

does not stabilize, so it is not Artinian. With this, we are ready to characterize the simple Artinian rings.

Theorem 2.2.8 (Artin-Wedderburn Theorem). Let R be a ring. The following statements are equivalent:

(1) The ring R is simple and Artinian;

(2) There exists a simple and faithful R-module M ;

(3) R is semisimple and has a unique isomorphism class of simple R-modules;

(4) R is isomorphic to Mn(D), for some natural number n and a division ring D.

Proof.
(1) ⇒ (2) We know that any ring R has a maximal left ideal L, and therefore the R-module R/L is
simple. Note that AnnR(R/L) is a bilateral ideal of R, but since R is simple and has a unit, it follows that
AnnR(R/L) = {0}, so M = R/L is simple and faithful.
(2) ⇒ (3) Let M be a simple and faithful R-module, and consider the family of left ideals of R given by

F := {ker(φ) | φ ∈ HomR(R,Mn), n ∈ N}.

Since R is Artinian, it follows that there exists a natural number n and φ ∈ HomR(R,Mn) such that ker(φ)
is minimal. We will show that φ is injective. In fact, if it were not, take a non-zero element r ∈ R such that
φ(r) = 0, and note that since M is faithful, there exists m ∈ M such that rm ̸= 0, i.e., r /∈ AnnR(m). We
can then consider the map given by

ψ : R 7→ Mn ⊕M,

ψ(r) = (φ(m), rm).

Note that ψ is an R-homomorphism such that ker(ψ) = ker(φ) ∩ AnnR(m) ⊊ ker(φ), which contradicts the
minimality of φ. Therefore, we conclude that φ is injective, and hence R ∼=R Im(φ). Since M is simple, it
follows that Mn is semisimple, which in turn implies that Im(φ) is also semisimple, allowing us to conclude
that R is semisimple and has a unique isomorphism class of simple R-modules.
(3) ⇒ (4) If R is semisimple and has a unique isomorphism class of simple R-modules, it follows that the
Wedderburn decomposition of R has a single component, and therefore Wedderburn’s theorem guarantees
that R ∼= Mn(D), for some natural number n and a division ring D.
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(4) ⇒ (1) We have already seen that Mn(D) is a simple ring, and it is also an Artinian ring because Mn(D)
is a finite-dimensional vector space over D. ■

The previous theorem shows that a simple Artinian ring is always isomorphic to a matrix ring over a
division ring, and with this, we conclude the main results on the semisimplicity of rings.

2.3 The Jacobson Radical

Now we will have a brief discussion on an important tool for the study of semisimple rings and algebras,
known as the Jacobson radical of a ring. We define the Jacobson Radical J(R) of a ring R as the intersection
of all left maximal ideals, that is,

J(R) :=
⋂

{L ⊆ R|L is a left maximal ideal}.

This object will be useful for us because it is possible to characterize the semisimplicity of a given ring in
terms of its radical, and we will see that in some cases it is significantly easier to demonstrate that an algebra
is semisimple by studying its radical.

First, observe that if R is a ring and y ∈ J(R) is an element of its radical, then 1+y must be left-invertible,
that is, there exists x ∈ R such that x(1 + y) = 1. In fact, if 1 + y were not invertible, then the left ideal
R(1 + y) would be non-trivial and proper in R, so it would be contained in some left maximal ideal, but
since y ∈ J(R) and J(R) is contained in all left maximal ideals, it follows that 1 − y + y = 1 would belong to
some left maximal ideal of R, which is a contradiction. This also implies that any element of the form 1 − y
with y ∈ J(R) is left-invertible in R.

The definition of the radical also allows us to conclude the following facts:

Proposition 2.3.1. If R is a ring, then:

(1) J(R) is a two-sided ideal;

(2) If M is a simple R-module, then J(R)M = {0}. In particular, we have that

J(R) =
⋂

{AnnR(M)|M is a simple R-module};

(3) The radical of the ring R/J(R) is {0};

(4) If R is Artinian, its radical is a finite intersection of left maximal ideals.

Proof.
(1) Let x ∈ J(R) and r ∈ R, and let L be any left maximal ideal of R. Note that by definition, x ∈ L.

Define the map

φ : R/L 7→ R/L,

φ(a+ L) = ar + L,

and note that φ is an R-endomorphism, since for m ∈ R, we have φ(ma+L) = mar+L = m(ar+L), and
φ((a+b)+L) = (a+b)r+L = (ar+L)+(br+L). We know that any R-homomorphism maps the zero of
the domain to the zero of the codomain, so since x ∈ L, we have x+ L = 0, thus φ(x+ L) = xr + L = 0,
and hence xr ∈ L. Therefore, xr belongs to any left maximal ideal of R, and so xr ∈ J(R), proving that
the radical is a two-sided ideal.

(2) If M is a simple R-module, we know from Theorem 1.3.11 that there exists a left maximal ideal L of R
such that M ∼=R R/L. From the previous part, we know that J(R) is a two-sided ideal, so if x ∈ J(R),
then xr ∈ J(R) for any r ∈ R, and by definition, J(R) ⊆ L, so xr ∈ L, which implies that xr + L = 0,
hence

J(R)M = {0},
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implying that J(R) ⊆ AnnR(M). On the other hand, if x is an element of R that belongs to the
intersection of all annihilators of simple R-modules, it follows that x(1 + L) = 0 in the quotient R/L for
any left maximal ideal L of R, so x ∈ L, and hence x is an element of J(R). Thus, we conclude that

J(R) =
⋂

{AnnR(M)|M is a simple R-module},

as desired.

(3) The Correspondence Theorem for rings tells us that there is a bijection between the left ideals of R
containing J(R) and the left ideals of R/J(R). Therefore, if x+ J(R) belongs to the radical of R/J(R),
it follows that x+ J(R) belongs to all left maximal ideals of R/J(R), and consequently x belongs to all
left maximal ideals of R containing J(R) – which by definition are all the left maximal ideals of R –, so
x ∈ J(R). Hence, x+ J(R) = 0, and thus the radical of R/J(R) is {0}.

(4) Let R be Artinian, and consider the set

F = {
n⋂
i=1

Li|Li is a left maximal ideal of R,n ∈ N}.

Since R is Artinian, F has a minimal element L = ⋂n
i=1 Li for some natural n. If J(R) ̸= L, then there

exists a left maximal ideal Ij ̸⊆ L, but then Lj ∈ F and Lj ∩ L ⊊ L, contradicting the minimality of L.
Thus, J(R) is a finite intersection of left maximal ideals.

■

The Jacobson radical is also strongly connected to the concept of nilpotency. We say that an ideal L –
unilateral or bilateral – of a ring is nilpotent if there exists a natural number r such that L(r) = {0}, in other
words, any product of r elements of L is zero. This allows us to prove an important result.

Proposition 2.3.2. If R is a ring, then the following hold:

(1) Any nilpotent two-sided ideal of R is contained in J(R);

(2) If R is Artinian, then J(R) is nilpotent.

Proof.
(1) Let N be a nilpotent ideal of R, and let L be any left maximal ideal. Then M = R/L is a simple

R-module, so the R-submodule NM of M is either {0} or M . If NM = {0}, then since 1 ∈ R, all
elements of the form a+L, with a ∈ N , are zero, so N ⊆ L. If NM = M , we repeat the process until we
reach N (r)M = M , where r is the natural number such that N (r) = {0}, and in this case, if N ̸⊆ L, we
would have M = {0}, a contradiction, so N is contained in every left maximal ideal of R, and therefore
contained in its radical.

(2) Let J be the Jacobson radical of R, and consider the following descending chain of ideals

J ⊇ J (2) ⊇ ...

Since R is Artinian, there exists r ∈ N such that J (r) = J (r+i), for any i ∈ N. We claim that J (r) = {0}.
In fact, if it were not, we would have J (r)J (r) = J (r) ≠ {0}, so there are non-zero elements a, b ∈ J (r)

such that ab ̸= 0, and hence the left ideal J (r)b ̸= {0}. Thus, it follows that J (r)J (r)b = J (r)b ̸= 0, so the
set of left ideals L of J (r) such that J (r)L ̸= {0} is non-empty, and since R is Artinian, this implies that
there exists a minimal left ideal L such that J (r)L ̸= {0}. Certainly, such an ideal is principal, since
there exists a non-zero element x ∈ L such that J (r)x ̸= {0}, so L = J (r)x. In particular, we can then
find an element y ∈ J (r) such that x = yx, so (1 − y)x = 0, but since y ∈ J , it follows that 1 − y is
left-invertible, and hence x = 0. This implies that L = J (r)x = {0}, contradicting the fact that L was
minimal, and therefore we must have J (r) = {0}.

■
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Note that the previous result shows us that the Jacobson radical is precisely the largest nilpotent two-sided
ideal of an Artinian ring, and we will now see that an Artinian ring is semisimple if and only if its radical is
trivial.

Theorem 2.3.3. Let R be an Artinian ring. Then R is semisimple if and only if J(R) = {0}.

Proof.
(⇒) If R is semisimple, we know that there are unique orthogonal idempotent elements e1, ..., em such that

1 = e1 + ...+ em,

where Ri = Rei correspond to the simple rings in the Wedderburn decomposition of R. Therefore, if a ∈ J(R),
we have that

a = a(e1 + ...+ em) = ae1 + ...+ aem,

but we also know that each ei can be uniquely decomposed as a sum of orthogonal primitive idempotents
ei1, ..., eidi

, where each eij is an idempotent of a minimal left ideal of R isomorphic to Li. Therefore, we
obtain that

aei = aei1 + ...+ aeidi
,

and from Proposition 2.3.1, we know that J(R)Li = {0} since Li is a simple submodule, so aeij = 0 for any
i and j, implying that a = 0 and thus J(R) = {0}.
(⇐) From the previous proposition, we know that the radical of R is ⋂ni=1 Li for some natural n, where each
Li is a left maximal ideal. Therefore, consider the following map

φ : R 7→
n⊕
i=1

R/Li,

φ(r) = (r +R/L1, ..., r +R/Ln).

Note that this map is clearly a ring homomorphism, and if φ(r) = 0, then r ∈ Li for all i, so r ∈ J(R) = {0},
implying that the map is injective. It is easy to see that it is also surjective, and therefore φ is an isomorphism
of rings between R and a finite direct sum of R-modules, each of which is simple since each Li is a left
maximal ideal, so R is semisimple. ■

Example 2.3.4. We know that the ring of matrices Mn(R) is simple and Artinian, and since its radical J is
a proper two-sided ideal, it follows that J = {0}. On the other hand, if we consider the subring UTn(R) of
upper triangular matrices, the subset of matrices with zeros on the diagonal will be a nilpotent two-sided
ideal, so J(UTn(R)) ̸= {0}, and thus UTn(R) is not semisimple.

2.4 Semisimple Algebras

Given an algebra A over a field F, we say that it is semisimple if it is semisimple as a ring, that is, if A can
be written as a direct sum of simple A-submodules. Similarly, we say that an algebra is simple if it is simple
as a ring, i.e., if its only non-trivial bilateral ideal is the zero ideal.

We consider algebras of finite dimension over algebraically closed fields, such as C, for example, to
conclude a stronger version of Schur’s Lemma.

Lemma 2.4.1. Let A be a finite-dimensional algebra over an algebraically closed field F, and let L be a
simple A-submodule. Then EndA(L) and F are isomorphic fields.

Proof. First, note that by definition, every A-submodule is a vector space, that is, it has finite dimension.
Moreover, given an element f ∈ EndA(L), note that f is also an F-endomorphism because for any α ∈ F,
and for any A ∈ L, we have

f(αA) = f(αEA) = f((αE)A) = αEf(A) = αf(A),
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hence EndA(L) ⊆ EndF(L). Since F is algebraically closed, there exists an eigenvalue λ ∈ F of f with a
non-zero eigenvector X ∈ L such that

f(X) = λX.

Therefore, the map f − λE is an F-endomorphism with a non-trivial kernel, which belongs to EndA(L).
However, since L is a simple A-module, Schur’s Lemma implies that EndA(L) is a division ring, so f − λE
must be identically zero, which implies f = λE. Now consider the following ring homomorphism:

φ : F 7→ EndA(L),
φ(λ) = λE.

Note that φ is clearly injective, since λE = 0 implies that λ = 0. The previous observations about EndA(L)
show that φ is surjective, thus the result follows. ■

Similarly to what was done for the case of rings, we can write a semisimple algebra A as

A =
l⊕

i=1
Li,

where each Li is a simple A-submodule, and then we can consider the submodules

Ai :=
⊕

L∼=ALi

L ∼=A Ldi
i

which group all the di summands isomorphic to Li in the direct sum of A, for some non-negative integer di.
Thus, we can write

A =
m⊕
i=1

Ai
∼=A

m⊕
i=1

Ldi
i ,

where Li ̸∼=A Lj if i ̸= j. From this, it follows that each Ai is a bilateral ideal of A of the form Ai = AEi,
where each Ei is a central idempotent of A that is also the identity of the algebra Ai. This immediately
implies that if i ̸= j, then AiAj = {0}. Note that Wedderburn’s Theorem guarantees that each Ai is
isomorphic as a ring to Mdi

(EndR(Li)op), and we leave it to the reader to verify that this isomorphism is
also one of algebras. Since each Li is a simple submodule of A, Lemma 2.4.1 guarantees that EndR(Li) is a
field isomorphic to F, and therefore

Ai
∼= Mdi

(F)
are F-algebras isomorphic to each other, and thus we can identify A with the direct product of the algebras
Ai given by

A =
m∏
i=1

Ai.

These observations allow us to conclude analogous versions of the results discussed in the previous sections
for algebras.

Theorem 2.4.2 (Wedderburn’s Theorems for Algebras). Let A be a semisimple finite-dimensional algebra
over an algebraically closed field F, written as

A =
m⊕
i=1

Ai,

where Ai
∼=A Ldi

i , each Li is a simple submodule, and Li ̸∼=A Lj if i ̸= j. Then the following hold:

(1) Each Ai is isomorphic as an F-algebra to the full matrix algebra Mdi
(F), and therefore

A ∼=
m∏
i=1

Mdi
(F)

is an isomorphism of F-algebras. Conversely, any finite direct product of full matrix algebras is semisimple;
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(2) The Wedderburn decomposition of the algebra A is unique up to permutation of the Ai, and the
parameters m, di are uniquely determined by A;

(3) There exist unique centrally primitive orthogonal idempotents E1, ..., Em such that

E = E1 + ...+ Em,

where E is the identity of the algebra A. Moreover, for each Ei, there also exist unique centrally primitive
orthogonal idempotents Ei1, ..., Eidi

such that

Ei = Ei1 + ...+ Eidi
;

(4) If A is also commutative, then

A ∼=
m∏
i=1

F,

and in particular, the centrally primitive orthogonal idempotents form a basis for A as a F-vector space.

■

Statement (1) is nothing more than the analogous version of Theorem 2.2.4, (2) is the analogous version
of Proposition 2.2.5, and (3), (4) are the analogues of Corollaries 2.2.6 and 2.2.7, respectively, noting that in
the case of commutative semisimple algebras, we will have that A will be isomorphic to ∏m

i=1 F, which is a
vector space of dimension m, and also noting that the set of idempotents E1, . . . , Em is linearly independent,
it follows that they form a basis for A.

It is interesting to note that the dimension of A will be precisely given by the sum ∑m
i=1 d

2
i , i.e., the

dimension of A is always a sum of squares, and if we fix an integer n, then the possible partitions of n as a
sum of squares will determine all possible semisimple subalgebras of Mn(C), for example. It is also worth
noting that the center Z(A) of A can be written as

Z(A) =
m∏
i=1

Z(Ai) ∼=
m∏
i=1

Z(Mdi
(F)) ∼=

m∏
i=1

F,

since if i ≠ j, then AiAj = {0}, and the center of Mdi
(F) consists of multiples of the identity matrix.

Therefore, in this case, the center of A will be semisimple, and its dimension will be precisely the number of
isomorphism classes of simple A-submodules.

We can now answer the motivating question posed at the beginning of this chapter: when is it possible to
block-diagonalize a set of matrices simultaneously? The techniques developed so far allow us to conclude
that a matrix algebra can be block-diagonalized if and only if it is semisimple. To this end, let A ⊆ Mn(C) –
here we could consider any algebraically closed field – be a semisimple algebra with identity E written as

A ∼=A

m⊕
i=1

Ldi
i ,

where each Li is a simple A-module, and Li ̸∼= Lj if i ̸= j. We saw at the end of the previous chapter that
the simple submodules Li of A are isomorphic as A-modules to Cdi , i.e., the dimension of Li as a C-vector
space is precisely di. Now, note that the identity matrix I can be written as

I = E + (I − E),

where
(I − E)2 = I − E and E(I − E) = 0,

i.e., E and I − E are two orthogonal projections that sum to I, implying that we can decompose the space
Cn as the direct sum of their images, that is,

Cn = ECn ⊕ (I − E)Cn.
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Since E is the identity of A, it follows that ECn is an A-module, and that A(I − E)Cn = {0}, i.e., both
summands are A-invariant, which means that if we consider a basis for Cn formed by the union of the bases
for the summands, we obtain a basis where all matrices of A are block-diagonal, with one block corresponding
to ECn, and one block with all entries equal to zero corresponding to (I −E)Cn. Since ECn is an A-module,
it follows from Proposition 2.2.1 that it is semisimple, i.e., we can decompose ECn as a direct sum of simple
A-submodules, and from Proposition 2.2.3, it follows that each summand will be isomorphic to one of the Li
as an A-module, and consequently as a C-vector space. Then there exist non-negative integers ki for every
i ∈ {1, . . . ,m} such that

ECn ∼=A

m⊕
i=1

Lki
i ,

and since each Li is a C-subspace of dimension di, if we consider a basis for ECn composed of the union of
bases for each of the subspaces isomorphic to some Li, we obtain that the block corresponding to ECn will
be in a block-diagonal form, with ki blocks of size di × di for each i. This allows us to conclude that we can
always find an invertible matrix P such that P−1AP is a block-diagonal matrix algebra, i.e., the semisimple
matrix algebras are indeed those for which it is possible to find a simultaneous block-diagonalization of all
their elements.

2.5 Representations of groups and algebras

2.5.1 Initial Definitions

To conclude this chapter, we will present a brief discussion on representations of finite groups and algebras.
The theory of representations is extremely deep, with relevant applications in areas such as harmonic analysis,
quantum physics, Lie theory, and many others. For this reason, we believe it is interesting to present some
basic results on the subject, and especially to discuss the connection this theory has with the notion of
semisimplicity.

We begin with groups. If T is a homomorphism from a finite group G to the group GL(V ) of invertible
linear transformations on V , where V is a vector space of dimension n over a field F, we say that (T, V )
is a linear representation of degree n over F, and in this case, we also write Tg = T (g) when convenient.
Since V has finite dimension, we can fix a basis v1, . . . , vn for V and map each linear transformation to its
corresponding matrix. The composition of this isomorphism with the representation will then give us a
representation of G in GL(n,F), called the matrix representation.

The following example is fundamental for understanding the relationship between permutation and linear
representations:

Example 2.5.1. Let Sn be the symmetric group on n elements, and let V be a vector space over F of
dimension n. Fix a basis v1, . . . , vn for V , and define the endomorphism Pσ for σ ∈ G as

Pσvi = vσ(i),

that is, Pσ permutes the vectors of the basis according to σ. The map σ 7→ Pσ is then a faithful representation
of Sn of degree n, and in particular, if we take V = Fn, we obtain that this representation gives us an
isomorphism between the elements of Sn and the group of permutation matrices in GL(n,F).

If G is a group with n elements and V has dimension n, we can then define the map

T : G 7→ GL(V ),
T (g) = PgL ,

that is, we map the element g to the permutation matrix associated with the permutation gL in Sn, where
gL(h) = gh for any h ∈ G. This map is the composition of the monomorphism g 7→ gL given by Cayley’s
Theorem with the monomorphism gL 7→ PgL from the previous example. Thus, it gives us a faithful
representation of G in GL(V ), called the regular representation of the group, and naturally, we obtain the
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regular matrix representation when we take V = Fn. We say that two representations (T, V ), (T ′, V ) of G
are equivalent if there exists S ∈ GL(V ) such that

T ′
g = STgS

−1,

for any g ∈ G. In terms of matrix representations, this means that the matrices of T ′ are obtained from a
change of basis of the matrices of T .

2.5.2 Irreducibility and Maschke’s Theorem

If (T, V ) is a representation of G, we say that a subspace W of V is a G-subspace if W is invariant under all
the matrices of the representation, that is, for any g ∈ G, it follows that TgW ⊆ W . In this case, we can
decompose the space V as a direct sum of W and its complement, and then (T |W ,W ) is a representation of
G. We say that a representation T is irreducible if the only proper G-subspace of V is {0}, and otherwise,
we say that T is reducible. A completely reducible representation is one in which every G-subspace W has a
G-subspace complement W ′ such that V = W ⊕W ′. With this, we can prove two important results.

Proposition 2.5.2. Let G be a finite group and (T, V ) a completely reducible representation of G of degree
n. Then the following hold:

(1) Every G-subspace induces a completely reducible representation;

(2) The space V can be decomposed as a direct sum of irreducible G-subspaces.

Proof.
(1) Let W be a G-subspace, and let T |W be the representation induced by W . Note that if N is a G-subspace

of W , then it is also a G-subspace of V , and since T is completely reducible, it follows that we can find a
G-subspace M of V such that

V = N ⊕M,

so
W = N ⊕ (W ∩M),

but note that W ∩M is also a G-subspace, so T |W is completely reducible.

(2) Let W be a proper and non-trivial G-subspace of V – if none exists, then V is irreducible, and there is
nothing to prove. We can then find another G-subspace W ′ such that

V = W ⊕W ′,

where dim(W ),dim(W ′) < dim(V ) = n. We can then use induction on n and the previous item to find
direct sum decompositions into irreducible G-subspaces for W and W ′, and hence we obtain the desired
result.

■

Now we can prove one of the most important basic results in group representation theory.

Theorem 2.5.3 (Maschke’s Theorem). If G is a finite group and (T, V ) is a representation of G over F such
that the characteristic char(F) of the field does not divide |G|, then T is completely reducible.

Proof. Let W be a G-subspace of V , and let W ′ be a complement of W in V – initially, W ′ may not be a
G-subspace. We then obtain a decomposition

V = W ⊕W ′,
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and then we can find a projector E in W such that EV = W , E2 = E. Now define the operator

R : EndF(V ) 7→ EndF(V ),

R(A) = 1
|G|

∑
g∈G

TgAT
−1
g ,

known as the Reynolds operator. In the next chapters, we will see that this operator has several interesting
properties and can be used to demonstrate some results in combinatorial optimization. First, we note that if
h ∈ G and A ∈ EndF(V ), then

ThR(A)T−1
h = 1

|G|
∑
g∈G

(ThTg)A(T−1
g T−1

h )

= 1
|G|

∑
g∈G

ThgAT
−1
hg

= R(A),

where the last equality follows from the fact that the map g 7→ hg is a bijection in G, i.e., G = hG. Therefore,
we conclude that the image of R is contained in the center of G in EndF(V ). Now note that if w ∈ W , then
T−1
g w ∈ W , so

TgET
−1
g w = TgT

−1
g w = w,

which implies that R(E)W = W . On the other hand, if v ∈ W ′, then ET−1
g v ∈ W , so TgET−1

g v ∈ W , and
thus R(E)V = W , and therefore R(E) is indeed a projection onto W . We can then decompose V as

V = R(E)V ⊕ (I − R(E))V,

and observe that since R(E) commutes with all the Tg, we have

Tg(I − R(E)) = (I − R(E))Tg,

so (I − R(E))V is also a G-subspace, and therefore T is completely reducible, as desired. ■

2.5.3 Group Algebra and Semisimplicity

Maschke’s theorem, together with item (2) of the previous proposition, allows us to conclude that if T is a
representation of a finite group G in GL(n,C), for example, and if V = Cn is decomposed as

V = W1 ⊕ . . .⊕Wk,

with each T |Wi
irreducible, then the matrix Tg is in the form

Tg =


Tg|W1

0 . . . 0
0 Tg|W2

. . . 0
...

... . . . ...
0 0 . . . Tg|Wk

 ,

where each Tg|Wi
is a block of size dim(Wi) × dim(Wi), i.e., we can block-diagonalize all the matrices of

the representation T . This result is extremely similar to what we obtain as a consequence of Wedderburn’s
Theorem for semisimple algebras, and this is no coincidence. There is a very natural way to unify the
language used to describe representations with the concepts we have seen so far about simple submodules
and semisimplicity, but for this, we first need to associate an algebra to the group G.
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Definition 2.5.4 (Group Algebra). If G is a finite group and F is a field, we define the group algebra as the
set FG = {

∑
g∈G αgg|αg ∈ F} of formal sums over G with coefficients in F, with operations given by

β · (
∑
g∈G

αgg) =
∑
g∈G

(βαg)g,

(
∑
g∈G

αgg) + (
∑
g∈G

βgg) =
∑
g∈G

(αg + βg)g,

(
∑
g∈G

αgg) · (
∑
h∈G

βhh) =
∑
g∈G

(
∑
h∈G

αgh−1βh)g

for any β ∈ F and ∑g∈G αgg,
∑
h∈G βhh ∈ FG.

The scalar multiplication and addition operations make FG a vector space of dimension |G|, where the
set of elements g = 1 · g forms a basis that can naturally be identified with G. The multiplication operation
may seem complicated, but we can derive it as follows: first, we write the product of two elements in the
usual form,

(
∑
g∈G

αgg) · (
∑
h∈G

βhh) =
∑
g,h∈G

αgβhgh,

and then we perform the change of variables t = gh, i.e., g = th−1, and we get∑
g,h∈G

αgβhgh =
∑
g∈G

(
∑
h∈H

αth−1βh)t,

but note that since t = gh and right multiplication by h is a bijection from G to G, it follows that∑
g∈G

(
∑
h∈H

αth−1βh)t =
∑
t∈G

(
∑
h∈H

αth−1βh)t,

and then it is enough to rename the variable t to obtain the expression from the definition. Another interesting
way to view the group algebra is through functions from G to F, that is, we can consider the set {φ : G 7→ F}
and then take the functions δg defined by δg(h) = 1 if h = g and 0 otherwise, so any φ : G 7→ F can be
written as

φ =
∑
g∈G

φ(g)δg,

and then we just need to identify δg with g to obtain FG. In this context, multiplication becomes a
convolution, because

(φ · ψ)(g) =
∑
h∈H

φ(gh−1)ψ(h).

With these definitions, it is clear that FG is an F-algebra with unit e = 1 · e, where e is the identity element
of G, and we will now see that much of the structural information of the group G is encoded in the algebraic
structure of FG. We will now define the notion of a representation for any algebra. If A is a finite-dimensional
F-algebra, we say that a homomorphism of algebras T from A to EndF(V ) – where V is an n-dimensional
F-vector space – is a representation of degree n of A. From this, we can establish a correspondence between
the representations of A and its A-modules. In fact, if (T, V ) is a representation of A over F, then V is an
A-module if we define Av := T (A)v for any A ∈ A, v ∈ V . On the other hand, if V is any A-module, we can
define a representation (T, V ) of A where each A ∈ A is mapped to the endomorphism AL, with AL(v) = Av,
that is, the function that applies A to vectors in V . From this correspondence, we can reformulate the
concepts introduced earlier in terms of modules: if T is a representation of A, then T is irreducible if V is a
simple A-module, and T is completely reducible if V is a semisimple A-module.

This correspondence, together with Proposition 2.2.1, allows us to characterize semisimplicity in terms
of representations: an algebra will be semisimple if and only if every representation (T, V ) is completely
reducible. We can also note that if A is semisimple over an algebraically closed field F, and if we write it as

A =
m∏
i=1

Ai,
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where Ai
∼=A Ldi

i , each Li is a simple submodule, and Li ̸∼=A Lj if i ̸= j, then every irreducible representation
(T, V ) will be of the form V ∼=A Fdi for some di. In fact, since V is a simple A-module, it follows from
Proposition 2.2.3 that it must be isomorphic as an A-module to one of the direct summands Li of A.
From Wedderburn’s Theorem, we know that Ai and Mdi

(F) are isomorphic algebras for any i, so each Li
is isomorphic to a simple submodule of some Mdi

(F), and by Example 1.3.14, these submodules are all
isomorphic to Fdi , so V ∼=A Li ∼=A Fdi .

With these results, we can now return to the case of finite groups. First, we note that the representations
of G correspond to the representations of FG. In fact, if (T, V ) is a representation of G, define the following
map:

T ′ : FG 7→ EndF(V ),
T ′(

∑
g∈G

αgg) =
∑
g∈G

αgT (g),

then (T ′, V ) is a representation of FG. Similarly, if (T ′, V ) is a representation of FG, we can define

T : G 7→ GL(V ),
T (g) = T ′(g),

then (T, V ) is a representation of G, i.e., there is a correspondence between the representations of the group G
and its group algebra. Furthermore, it also holds that W is a G-subspace if and only if it is an FG-subspace,
so a representation (T, V ) of G is completely reducible if and only if the corresponding representation (T ′, V )
of FG is completely reducible. We can now combine these observations with Maschke’s Theorem to obtain
the following result:

Corollary 2.5.5. If G is a finite group and F is a field whose characteristic does not divide |G|, then FG is
a semisimple algebra.

■

If G and F satisfy the conditions of the previous result – and additionally, if F is algebraically closed –,
we can then use Wedderburn’s Theorem to decompose the group algebra as

FG =
m∏
i=1

Ai
∼=

m∏
i=1

Mdi
(F),

where Ai are the components of the Wedderburn decomposition of the algebra, and since the dimension of
FG is precisely |G|, it follows that

|G| =
m∑
i=1

d2
i .

We say that a function φ : G 7→ F is a class function of G if φ(g) = φ(hgh−1), for any g, h ∈ G, i.e., φ is
constant on the conjugacy classes of G. We can show that the set of class functions can be identified with
the center Z(FG):

Theorem 2.5.6. If G is a finite group and F is an algebraically closed field, then the dimension of Z(FG) is
equal to the number of conjugacy classes of G, and every class function φ : G 7→ F can be identified with∑
g∈G φ(g)g ∈ Z(FG). In particular, the dimension of Z(FG) is equal to the number of non-isomorphic

irreducible representations of G over F.

Proof. Let C1, . . . , Cs be the conjugacy classes of G, and consider the elements

Ci =
∑
g∈Ci

g ∈ FG.
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Since the conjugacy classes partition G, it follows that C1, . . . , Cs are linearly independent, and if h ∈ G,
then hCih

−1 = Ci, so each Ci ∈ Z(FG), and thus the set of class functions is certainly contained in Z(FG).
To see the reverse inclusion, take an element x = ∑

g∈G αgg ∈ Z(FG), and we have that∑
g∈G

αgg = h−1(
∑
g∈G

αgg)h =
∑
g∈G

αgh
−1gh =

∑
g∈G

αhgh−1g,

where the last equality follows from the change of variable t = h−1gh, so αg = αhgh−1 for any h ∈ G, and
thus x is constant on the conjugacy classes of G. This shows that the class functions can be identified with
the elements of Z(FG), which has dimension s, and we have previously shown that the dimension of the
center of a semisimple algebra is exactly the number of isomorphism classes of simple modules, which in our
case are precisely the irreducible representations of G over F. ■

Example 2.5.7. We can consider the symmetric group S3 with 6 elements, and its group algebra CS3 of
dimension 6. This algebra is semisimple, so its dimension must be a sum of squares, but there are only two
possibilities for writing 6 as a sum of squares:

6 = 1 + 1 + 1 + 1 + 1 + 1 and 6 = 1 + 1 + 22.

Since S3 is not abelian, it follows that CS3 is not a commutative algebra, and thus we are left with only the
second possibility. Therefore,

CS3 ∼= C × C ×M2(C),

that is, there are 3 isomorphism classes of irreducible representations of S3, two of degree 1 and one of degree
2. The center of CS3 will have dimension 3, which is precisely the number of conjugacy classes of S3.
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3 Matrix Algebras
We will now study subsets of Mn(C) that form algebras, called matrix algebras. These algebras are of great
importance in various areas of mathematics, and are particularly interesting for computational applications.

We denote the identity matrix in Mn(C) by I, and the matrix with all elements equal to 1 as J . If n is
a natural number, we define the set [n] := {1, . . . , n} as all the natural numbers up to n. We remind the
reader that if V is a vector space over C, and if there exists a function

⟨·, ·⟩ : V × V 7→ C

that is linear in the first variable, satisfies ⟨v, w⟩ = ⟨w, v⟩ for any v, w ∈ V , and ⟨v, v⟩ is real and positive
if v ̸= 0, then we say that V is an inner product space. Such a function determines an induced norm
||v|| := ⟨v, v⟩1/2 that maps elements of V to real numbers. If V,W are two vector spaces over C with inner
products ⟨·, ·⟩1, ⟨·, ·⟩2, respectively, and if φ is a C-homomorphism between V and W , we define the adjoint
φ∗ of φ as the C-homomorphism between W and V such that for any v ∈ V and u ∈ W we have

⟨v, φ∗(u)⟩1 = ⟨φ(v), u⟩2,

and in the case where W = V and φ = φ∗, we say that φ is self-adjoint. If W is a subspace of V , we define

W⊥ := {v ∈ V | ∀w ∈ W : ⟨v, w⟩ = 0}

as the orthogonal subspace of W , and if V has finite dimension, we can always decompose

V = W ⊕W⊥

as a direct sum of vector spaces. In this case, there exist unique self-adjoint and idempotent operators
PW , PW⊥ – called orthogonal projections – that map a given matrix X to its respective component in W or
W⊥.

In the case of matrices, the adjoint of a matrix A ∈ Mn(C) is simply the conjugate-transpose matrix
A∗ = (A)T . We can define an inner product for the matrix algebra Mn(C) as follows:

⟨A,B⟩ := tr(AB∗),

where tr denotes the trace of a matrix. We leave it to the reader to verify that the above function is indeed
an inner product, and it is also worth noting that for any matrix A ∈ Mn(C), the matrix AA∗ is Hermitian,
i.e., has real eigenvalues, and therefore its trace is also a real number.

We can also formalize two operations that will be quite common from now on: the operation of mapping
a vector v = (v1, . . . , vn) to a diagonal matrix Diag(v) with diagonal entries given by v1, . . . , vn, and the
operation of mapping any matrix A to the vector diag(A) = (A11, . . . , Ann) of its diagonal entries. Formally,
we define the function

Diag : Cn 7→ Mn(C),

where

Diag(v) =


v1 0 . . . 0
0 v2 . . . 0
...

...
...

...
0 0 . . . vn

 ,
and similarly, we define the function

diag : Mn(C) 7→ Cn,
diag(A) = (A11, . . . , Ann).

Note that both are C-linear functions, and that Diag∗ = diag, i.e., one is the adjoint of the other.
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We recall that a Hermitian matrix X ∈ Mn(C) is said to be positive semidefinite (PSD) if, for any vector
v ∈ Cn, we have v∗Xv ≥ 0. Equivalently, X has only real non-negative eigenvalues, and therefore if we write
the diagonalization X = UΛU∗, where Λ = Diag(λ1, . . . , λn) is a diagonal matrix of eigenvalues and U is a
unitary matrix of eigenvectors, we can define

X1/2 := UDiag(λ1/2
1 , . . . , λ1/2

n )U∗.

Note that X1/2 is clearly Hermitian, and in this case, it easily follows that X is PSD if, and only if, there
exists a matrix B such that X = BB∗, because we can take B = UDiag(λ1/2

1 , . . . , λ
1/2
n ). We denote the set

of symmetric n × n matrices with real entries by Sn, the subset of Sn formed by PSD matrices with real
entries will be denoted by Sn+, and the subset of positive definite matrices with real entries will be denoted
by Sn++. The set Sn+ ⊆ Sn is not a vector subspace because, although it is closed under addition, it is not
closed under scalar multiplication, but it is a cone over R, i.e., it is a closed subset under multiplication by
non-negative real numbers, and it is also a convex set.

3.1 ∗-Algebras

Let A be a matrix algebra in Mn(C), that is, a C-subspace closed under matrix multiplication that has a
multiplicative identity element. We say that A is a ∗-algebra – or a self-adjoint algebra – if for any element
A in A, its conjugate-transpose A∗ also belongs to A. A subalgebra B of A that is also closed under the
conjugate-transpose is called a ∗-subalgebra, and a homomorphism φ of algebras is called a ∗-homomorphism
if φ(A∗) = φ(A)∗.

Example 3.1.1 (Polynomial Algebra). If we consider any Hermitian matrix A ∈ Mn(C), the set C[A] of all
polynomials in A, that is, expressions of the form

a0I + a1A+ a2A
2 + ...+ akA

k,

is a commutative ∗-algebra with identity I. If A = ∑d
i=1 λiEi is the spectral decomposition of A, where d is

the number of distinct eigenvalues, we have that

Ei =
∏
j ̸=i

A− λjI

λi − λj
,

that is, Ei is a polynomial in A, and therefore Ei ∈ C[A]. It follows that the dimension of C[A] is exactly d,
since the matrices {Ei} form a linearly independent set, and Ak = ∑d

i=1 λ
k
iEi for any k, so they generate

C[A]. We can then decompose C[A] as

C[A] = C[A]E1 ⊕ . . .⊕ C[A]Ed = CE1 ⊕ . . .⊕ CEd,

where the matrices Ei will be the primitive central idempotents of the algebra, and therefore A is semisimple.
Each component CEi is a simple C[A]-module of dimension 1, and since all the matrices in C[A] are
polynomials in A, we can consider the unitary matrix U with the normalized eigenvectors of A in its columns
so that U∗C[A]U is a set of diagonal matrices. It is also interesting to consider the centralizer of A in Mn(C),
that is, the set

C(A) = {B ∈ Mn(C) | [A,B] = 0},

and note that C is a matrix algebra with identity I that contains C[A] as a subalgebra, so the dimension of
C(A) is at least d+ 1. Furthermore, C(A) will be a ∗-algebra, because if B ∈ C(A), we have

B∗A = (A∗B)∗ = (AB)∗ = (BA)∗ = AB∗.

Example 3.1.2 (Centralizers of Permutation Groups). An important example of ∗-algebras is the centralizers
of permutation groups. Formally, a permutation group is nothing more than a subgroup of the symmetric
group Sn, and there is a natural correspondence between permutation groups and subgroups of GLn(C)
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formed by permutation matrices. If G ⊆ GLn(C) is a subgroup formed by permutation matrices, its
centralizer C(G) will be a matrix algebra with identity I. If A ∈ C(G), P ∈ G, noting that P T = P ∗ and
that P T ∈ G, we have

A∗P = (P TA)∗ = (AP T )∗ = PA∗,

so C(G) is a ∗-algebra. A case that will be particularly interesting for the upcoming chapters is when we
consider the centralizer of the automorphism group of a graph X, that is, the subgroup of GLn(C) formed
by the permutation matrices P such that PAP T = A, where A is the adjacency matrix of X. The fact that
this set forms a ∗-algebra will be useful for inferring combinatorial properties of certain graphs that exhibit
high regularity.

3.2 Triangularization and Diagonalization of Commutative Algebras

This section focuses on results related to commutative algebras, which will later serve as the basis for
proving facts about ∗-algebras. First, we will show that every commutative matrix algebra in Mn(C) can
be simultaneously triangularized, that is, there exists an orthogonal basis where all the matrices of the
algebra are in upper triangular form. From there, we will conclude that every commutative ∗-algebra can be
simultaneously diagonalized, meaning there exists a common eigenvector basis for all the matrices in the
algebra.

Before we show the general result, we will need two auxiliary results, which are proven below:

Lemma 3.2.1. Let A be a matrix in Mn(C), and W a A-invariant subspace of Cn. Then there exists an
eigenvector of A in W .

Proof. Let B = (v1 v2 . . . vk) be an n × k matrix with a basis for W in its columns, where k is the
dimension of W . The fact that W is A-invariant is equivalent to saying that

AB = BC,

where C is some k × k matrix with the coefficients of the action of A on each of the elements of the basis of
W . Since C ∈ Mk(C), we can take an eigenvector v ∈ Ck with eigenvalue λ for C, so

ABv = BCv = λBv,

thus Bv is an eigenvector of A with eigenvalue λ. ■

Lemma 3.2.2. If {A1, ..., Ad} is a set of matrices in Mn(C) that commute with each other, then there exists
a vector v that is a common eigenvector for all the matrices.

Proof. We will prove this by induction on d. In the base case, note that since A1 and A2 commute, we have
that if v is an eigenvector of A1 with eigenvalue λ, then for any k

A1(Ak2v) = Ak2(A1v) = λ(Ak2v),

so Ak2v is an eigenvector of A1. Therefore, we consider the space

W = spanC(v,A2v,A
2
2v, . . . ),

which by construction is A2-invariant, so by the previous lemma it contains an eigenvector of A2, but since
every element of W is also an eigenvector of A1, we obtain a common eigenvector. For the general case, we
use induction to find a common eigenvector for A1, ..., Ad−1, and then apply the same reasoning in

W = spanC(v,Adv,A2
dv, . . . ),

thus obtaining a common eigenvector for A1, ..., Ad. ■

Now we are ready to prove the main result of this section.
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Theorem 3.2.3. Every commutative matrix algebra A in Mn(C) can be simultaneously triangularized by
an orthogonal basis. In other words, there exists a unitary matrix U such that the matrices of U∗AU are all
in upper triangular form.

Proof. Let {A1, ..., Ad} be a basis for A. We will prove the result by induction on n. The base case is
immediate, and for the general case we first find a common eigenvector v1 for A1, ..., Ad using the previous
lemma, and then decompose the space as

Cn = Cv1 ⊕W,

where W = (Cv1)⊥. Note then that each matrix Ai can be written with respect to a basis formed by v1 and
a basis for W , and such a matrix will be of the form

Ai =
(
λi ai
0 Ai|W

)
,

where λi is the eigenvalue of Ai associated with v1, ai is a row vector of dimension n − 1. Since A is
commutative, it follows that the vector space generated by the matrices {Ai|W } is a commutative matrix
algebra in Mn−1(C), so by induction we can find a unitary matrix U such that U∗Ai|WU is upper triangular.
From this it follows that the change of basis given by(

1 0
0 U∗

)(
λ a
0 Ai|W

)(
1 0
0 U

)
=
(
λ a′

0 U∗Ai|WU

)

puts all the matrices Ai in upper triangular form, so A can be simultaneously triangularized by an orthogonal
basis, as we wanted. ■

We note that the previous result implies that every matrix in Mn(C) can be triangularized by an
orthogonal basis. It is also common to find versions of the previous result stated in terms of a commutative
family of matrices, that is, an arbitrary set {Ai} of commuting matrices in Mn(C), but note that the result
at hand immediately implies these other versions: simply consider the algebra generated by the family, which
will be a subalgebra of Mn(C) of finite dimension, and then apply our result to any basis. In the particular
case of commutative ∗-algebras, we obtain the following corollary:

Corollary 3.2.4. Every commutative ∗-algebra A of matrices in Mn(C) has a common orthogonal eigenvector
basis. In other words, there exists a unitary matrix U such that the matrices of U∗AU are all in diagonal
form.

Proof. First, note that if W is an A-invariant subspace, then W⊥ is A∗-invariant. If W = Cv where v is an
eigenvector of A, then since A is normal, it follows that v is also an eigenvector of A∗, so W is A∗-invariant,
implying that W⊥ is A-invariant. Therefore, in the proof of the previous Theorem, when we take a common
eigenvector v1 for a basis of A, the space W = (Cv1)⊥ will be invariant under the matrices of the basis, and
then we can proceed inductively to obtain a simultaneous diagonalization of A by a common orthogonal
eigenvector basis U . ■

3.3 Semisimplicity of ∗-Algebras

Now we are ready to present the elementary proof of the main result of this chapter: every ∗-algebra is
semisimple. First, we will demonstrate a very useful auxiliary result: every matrix algebra with respect to
the Schur product has a unique basis of 01-matrices – that is, matrices with entries in {0, 1} – which is
orthogonal with respect to the Schur product. We will prove the result in two ways: the first follows almost
immediately from the characterizations of semisimplicity seen in the previous chapter, while the second is
elementary and constructs the basis explicitly.

Lemma 3.3.1. If A ⊆ Mn(C) is a matrix algebra with respect to the Schur product, then there exists a
unique basis of matrices A1, ..., Ad with entries in {0, 1} for A such that Ai ◦Aj = 0 if i ̸= j.
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Proof 1. Let A be a matrix algebra with respect to the Schur product. Denote by A◦k the Schur product
of a matrix A with itself k times, and note that A◦k

ij = Akij . Therefore, if A ∈ A is a nilpotent element, it
follows that A = 0, and so the Jacobson radical of A is {0}, meaning that A is semisimple. This shows that
every matrix algebra with respect to the Schur product is semisimple, and from this it follows that we can
consider its central primitive orthogonal idempotents A1, ..., Ad such that

E = A1 + . . .+Ad.

Note that the matrices Ai are idempotent with respect to the Schur product, so Ai ◦Ai = Ai, meaning that
Ai is 01, and also that Ai ◦Aj = 0 if i ̸= j. Since every matrix algebra with respect to the Schur product
is commutative, by Theorem 2.4.2 it follows that the idempotents A1, ..., Ad form a basis for A, and the
uniqueness of this basis follows from the uniqueness of the idempotents. ■

Proof 2. To demonstrate the result in an elementary way, we will first make two observations about
polynomials in matrices with respect to the Schur product. Let A ∈ Mn(C) be any matrix, and write

A =
l∑

i=1
αlAl,

where {α1, ..., αl} is the set of distinct non-zero entries of A, and the matrices Al are the orthogonal 01
components of A with entries equal to 1 in the positions where αl occurs in A, and zero elsewhere, with
Ai ◦Aj = 0 if i ̸= j, and A ◦Ai = αiAi. Now, if p(x) = ∑n

i=0 anx
n is a polynomial with coefficients in C, we

can define the expression
p ◦A = a0E + a1A+ · · · + anA

◦n,

and note that

p ◦A =
l∑

i=1
p(αl)Al,

because since Al is a 01 matrix, it follows that it is idempotent with respect to the Schur product, meaning
that A◦k

l = Al for any k. In particular, we can define the polynomials5

pi(x) =
∏
j ̸=i

x− αj
αi − αj

,

such that pi(αi) = 1 and pi(αj) = 0 if j ̸= i, so pi(A) = Ai, and thus it is always possible to find a polynomial
in terms of the Schur product that maps A to one of its 01 components. Since A is closed under the Schur
product, this means that it contains all the 01 components of its matrices, so A is generated by a set of
01 matrices. We can then consider the primitive elements, that is, those 01 components that cannot be
decomposed into a sum of two or more 01 components in A, and note that these components form a set
of orthogonal idempotents with respect to the Schur product that generate A. Moreover, this set must be
linearly independent due to its orthogonality, so it forms the desired basis for A. Any other orthogonal
idempotent basis must be formed by primitive elements, so it will be a permutation of the previously found
basis. ■

The basis of orthogonal 01 matrices for the Schur product found in the last proof is known as the Schur
basis of an algebra with respect to the Schur product. With this result, we are now able to show that every
commutative ∗-algebra is semisimple.

Theorem 3.3.2. Every commutative ∗-algebra is semisimple. In particular, if A is a commutative ∗-algebra
of dimension d, then there exists a unitary matrix U and a partition [n] = S0 ⊔ S1 ⊔ ... ⊔ Sd, with S1, ..., Sd
non-empty, such that

A = U{λ1I1 + ...+ λdId | λi ∈ C}U∗,

where each Ii is the diagonal matrix with ones in the positions of Si and zeros elsewhere.
5The polynomials in question are known as Lagrange interpolating polynomials.
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Proof. Note that if A ∈ A, then A∗ ∈ A by definition, and since the algebra is commutative, it follows that
A is normal. If we fix a basis for A, this implies that such a basis consists of normal matrices that commute,
so Corollary 3.2.4 guarantees the existence of a matrix U that simultaneously diagonalizes all matrices in
the basis, and consequently all matrices in A. A diagonal matrix algebra is closed under the Schur product,
so we can apply Lemma 3.3.1 to obtain a basis I1, ..., Id of 01 diagonal matrices with disjoint support, so
we define Si as the set of indices of the respective non-zero entries of Ii, and S0 as the set of indices in [n]
that correspond to zero entries in all elements of the basis, i.e., I0 = I − (I1 + ...+ Id). Thus we obtain a
partition [n] = S0 ⊔ S1 ⊔ ... ⊔ Sd, and every element of A will be a linear combination of I1, ..., Id. ■

The matrices E1, ..., Ed given by Ei = UIiU
∗ obtained from the matrices in the previous theorem are

precisely the centrally primitive orthogonal idempotents of A, because EiEj = δijEi, E1 + ... + Ed is the
identity, and the dimension of the algebra is exactly d. Furthermore, each Ei is an orthogonal projector onto
a sub-eigenspace, i.e., a subspace contained in an eigenspace, of each matrix in A, and in particular Ei is
PSD. Note also that S0 = ∅ implies that I ∈ A, and in this case the algebra A will be a subalgebra of Mn(C).
Since these idempotents form a basis for A, it follows that every matrix A in the algebra can be written as
A = ∑d

i=1 αiEi and that AEi = αiEi, so the Wedderburn decomposition of A is given by

A =
d⊕
i=1

AEi =
d⊕
i=1

CEi =
d∏
i=1

CEi.

With this, we are ready to prove the main theorem of this section. Similarly to what was done earlier, we will
present more than one proof for the result. The first is a constructive and elementary proof due to [BGSV12],
and the second and third are proofs that strongly depend on the concepts developed in the previous chapter
about semisimple algebras and their various characterizations.

Theorem 3.3.3. Every ∗-algebra A in Mn(C) is semisimple. In particular, we can write

A =
m⊕
i=1

AEi,

where the matrices Ei are the centrally primitive orthogonal idempotents of A.

Proof 1 ([BGSV12, Theorem 9.1]). To show the result, we will follow this strategy: first, we will consider
a maximal commutative ∗-subalgebra contained in A and obtain its minimal idempotents, then we will
construct an equivalence relation from this set of idempotents, and finally, we will obtain the centrally
primitive orthogonal idempotents of A from the equivalence classes of this relation.

We start with B ⊆ A being a maximal commutative ∗-subalgebra—and note that Z(A) ⊆ B. First,
we show that CA(B) ⊆ B, i.e., B contains all matrices that commute with all of its elements. Indeed, let
A ∈ CA(B) be a matrix in the centralizer of the subalgebra, and consider the following possibilities:

(i) If A is normal, note that if A /∈ B, then the algebra generated by B ∪ {A,A∗} is a commutative
∗-subalgebra strictly containing B, contradicting its maximality;

(ii) If A is not normal, we can consider the matrix A+A∗, which is certainly normal, and therefore by the
same argument as in the previous item, A + A∗ must belong to B. But since A ∈ CA(B), we would
have A(A+A∗) = (A+A∗)A, leading to a contradiction, as this implies that A is normal.

Thus, we conclude that B contains its centralizer. Using Theorem 3.3.2, we can obtain a unitary matrix U
that, after replacing A with U∗AU , allows us to assume without loss of generality that B is in diagonal form,
with minimal idempotents given by the matrices I0, I1, ..., Id with 01 entries that form an orthogonal basis
for B, and with partition [n] = S0 ⊔ S1 ⊔ ... ⊔ Sd. Since the identity in B is the same as in A, it follows that
I1 + ...+ Id is the identity of A, but note that in general the matrices Ii do not need to belong to the center
of A, simply because Z(A) ⊆ Z(B), meaning the matrices Ii are still not the centrally primitive orthogonal
idempotents of A, and to obtain them, we need a bit more effort.

Now we will fix A ∈ A and define the matrices Aij , with i, j ∈ {0, ..., d} and size |Si| × |Sj |, given by the
restrictions of IiAIj to the rows of Si and columns of Sj . We observe that:
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(i) A00 = 0, and Aii is a multiple of the identity matrix in M|Si|(C). To see this, first note that the matrix
IiAIi is a diagonal matrix with non-zero entries given by the diagonal entries of A indexed by Si, and
also that if i ̸= j,

(IiAIi)Ij = 0 = Ij(IiAIi),

so IiAIi commutes with the basis of B, and hence IiAIi ∈ CA(B) ⊆ B. In the case of I0AI0, since
I0BI0 = {0}, we obtain I0AI0 = 0. For the remaining i, since the basis is formed by diagonal matrices
with disjoint support, we have that the coefficients of IiAIi with respect to the basis I1, ..., Id will be
zero for any j ̸= i, i.e., IiAIi is indeed a multiple of Ii, and its restriction in M|Si|(C) will be a multiple
of the identity matrix;

(ii) Aij is either zero or a positive multiple of a unitary matrix, and in this case, the cardinalities of Si are
equal. Indeed, take Aij non-zero and assume without loss of generality that |Si| ≥ |Sj |, and note that

(IiAIj)(IiAIj)∗ = Ii(AIjA∗)Ii,

so by (i) it follows that (AIjA∗)ii is a multiple of the identity in M|Si|(C), implying that AijA∗
ij is also,

so rk(Aij) = |Si|, but on the other hand, rk(Aij) ≤ |Sj |, so |Si| = |Sj |, and hence the matrices Aij are
square for all i, j. This implies that AijA∗

ij is a PSD matrix, and must therefore be a positive real
multiple—denoted by α—of the identity in M|Si|(C), and then

√
αAij is a unitary matrix, making Aij

a positive multiple of a unitary matrix.

With these observations, we proceed to the final part of the proof. We define a relation ∼ on the set [d]
as follows: i ∼ j if and only if IiAIj ≠ {0}, i.e., index i is related to index j if and only if there exists a
matrix A in A such that the matrix formed by the rows of A indexed by Si and the columns of A indexed
by Sj is not entirely zero. The relation is reflexive by observation (i), and it is also symmetric because A
is a ∗-algebra, so IiAIj = (IjAIi)∗. The transitivity follows from observation (ii): if i ∼ j and j ∼ k, then
there exist matrices A,B ∈ A such that IiAIj and IjBIk are non-zero, and therefore Aij , Bjk are positive
multiples of unitary matrices of the same size (since |Si| = |Sj | = |Sk|), and thus the product AijBjk is a
unitary matrix, implying that

0 ̸= (IiAIj)(IjBIk) = Ii(AIjB)Ik ∈ IiAIk,

so i ∼ k.
Now, consider {E1, ..., Em} = {

∑
j∼i Ij | i ∈ [d]} as the 01 diagonal matrices induced by the equivalence

classes ∼ on the minimal idempotents of B. We claim that the matrices Ei are the centrally primitive
orthogonal idempotents of A. Indeed, first note that by construction each Ei is a Hermitian and idempotent
matrix, E1 + ...+Em is the identity in A, and if i ̸= j, then EiAEj = {0}, so the idempotents are orthogonal.
If A ∈ A, then

AEi = (
∑
j

Ej)AEi

=
∑
j

EjAEi

= EiAEi

= EiAEi +
∑
j ̸=i

EiAEj

=
∑
j

EiAEj

= EiA(
∑
j

Ej)

= EiA,
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implying that each Ei ∈ Z(A). We can then decompose A as

A =
m⊕
i=1

AEi =
m∏
i=1

AEi

where the sets AEi are A-submodules that are semisimple by construction. The sum is direct because the
submodules are written in terms of orthogonal idempotents, thus A is semisimple, as we wanted. ■

The proof in question is interesting for several reasons, but perhaps the main one is the fact that it is a
constructive proof. It is possible to find a maximal commutative ∗-subalgebra in linear time in the dimension
of the algebra A, that is, the proof gives us an efficient algorithm to find the idempotents of the algebra, and
from these idempotents, it is possible to obtain a common block-diagonal basis for all the matrices of A.
Now we will proceed with the other proofs.

Proof 2. Let A be a ∗-algebra, and let B ⊆ A be an A-submodule. We know that B is also a vector subspace
of A, so we can decompose

A = B ⊕ B⊥,

where B⊥ is the orthogonal complement of B in A. Fix X ∈ B⊥, and take any element A ∈ A, so for any
B ∈ B we have:

⟨AX,B⟩ = tr(AXB∗)
= tr(XB∗A)
= tr(X(A∗B)∗)
= ⟨X,A∗B⟩.

Since A ∈ A, it follows that A∗ ∈ A, and since B is an A-submodule, it follows that A∗B ∈ B. Therefore
⟨X,A∗B⟩ = 0, and from this we have that ⟨AX,B⟩ = 0, i.e., B⊥ is also an A-submodule. Thus, we conclude
that every A-submodule of A is a direct sum, and by Theorem 2.1.2, it follows that A is semisimple. ■

Proof 3. Let A be a ∗-algebra, and take an element A ∈ J(A) in its Jacobson radical. Since the radical is an
ideal, we have that A∗A ∈ J(A), and from Proposition 2.3.2 we know that this implies there exists a natural
number r such that (A∗A)r = 0. On the other hand, note that A∗A is a Hermitian matrix, so there exist
orthogonal projectors Eθ for every eigenvalue θ of A∗A such that

A∗A =
∑
θ

θEθ

thus
(A∗A)r =

∑
θ

θrEθ.

In particular, if we take a non-zero eigenvector v associated with any eigenvalue θ, we have

0 = (A∗A)rv = θrv,

but this occurs if and only if θ = 0, implying that A∗A = 0. Now take a non-zero vector v, and note that
(Av)∗(Av) = 0 if and only if Av = 0, but (Av)∗(Av) = v∗(A∗A)v = 0, so Av = 0 for any vector in the space,
and therefore A = 0. This implies that the Jacobson radical of A is trivial, and therefore by Theorem 2.3.3,
it follows that A is semisimple. ■
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4 Association Schemes
Association schemes are mathematical structures that lie at the intersection of algebra and combinatorics.
They originally emerged in the study of statistical experiments, but are now widely used in various areas of
mathematics and computer science, such as error-correcting code theory and combinatorial design theory.
Our goal in this chapter will be to introduce association schemes and also their more general versions, known
as coherent configurations, and to show the connections of this theory with the other topics discussed in the
previous chapters, with a focus on groups and graphs.

4.1 Configurations and Schemes

4.1.1 Basic Concepts

In this section and throughout the rest of the text, we will discuss relations on finite sets, and we will always
assume that any group G is finite. Given a finite set X, a subset R ⊆ X ×X is called a relation, that is, R
is a set of ordered pairs from X. We can classify a relation R as follows:

• R is reflexive if for any x ∈ X, (x, x) ∈ R;

• R is irreflexive if for any x ∈ X, (x, x) /∈ R;

• R is symmetric if for any (x, y) ∈ R, (y, x) ∈ R;

• R is asymmetric if for any (x, y) ∈ X, (y, x) /∈ R;

• R is antisymmetric if when (x, y), (y, x) ∈ R, then x = y;

• R is transitive if when (x, y), (y, z) ∈ R, then (x, z) ∈ R.

Whenever we have a relation R, we can consider its adjacency matrix A(R), given by a matrix of size
|X| × |X|, where

A(R)xy =
{

1, if (x, y) ∈ R,

0, otherwise.

Thus, it follows that R is reflexive if and only if Diag(A(R)) = I, and that R is symmetric if and only if
A(R) is symmetric. Therefore, we define the relation RT as the relation whose adjacency matrix is given by
A(R)T . Given a relation R, we can fix an element x ∈ X and consider the set

R(x) := {y ∈ X|(x, y) ∈ R}

of neighbors of x in R.
With these observations, we are ready to define coherent configurations.

Definition 4.1.1 (Coherent Configuration). Let X be a finite set, and let R0, ..., Rd be relations on X
with corresponding adjacency matrices A0, ..., Ad. We say that {A0, ..., Ad} – or (X, {Ri}di=0) – is a coherent
configuration if the following properties are satisfied:

(1) ∑d
i=0Ai = J ;

(2) If Ai has a diagonal entry, then Ai is a diagonal matrix;

(3) For each i ∈ {0, ..., d}, there exists i′ such that ATi = Ai′ ;

(4) For any i, j ∈ {0, ..., d}, there exist non-negative integers plij such that

AiAj =
d∑
l=0

plijAl

53



In terms of relations, item (1) tells us that R0, ..., Rd partition X × X, (2) tells us that either Ri is
irreflexive or it is a relation contained in {(x, x)|x ∈ X}, (3) tells us that the set is closed under transposition,
and (4) tells us that if we fix elements x, y ∈ X such that (x, y) ∈ Rl, then the number of neighbors of x in
Ri that have y as a neighbor in Rj′ is a constant plij that depends only on i, j, l, that is, for any (x, y) ∈ Rl,
we have

plij = |Ri(x) ∩Rj′(y)| = |{z ∈ X|(x, z) ∈ Ri, (z, y) ∈ Rj}|.

Another way to see the above equality is to look at the entry xy of AiAj , which will be the product of the
x-th row of Ai, which has 1’s in the positions z such that (x, z) ∈ Ai and 0 in the others, with the y-th
column of Aj , which has 1’s in the positions z such that (z, y) ∈ Rj – and equivalently (y, z) ∈ R′

j – and 0
in the others. This product will count the elements z in Ri(x) ∩Rj′(y). Combining items (1) and (2), we
see that there are diagonal matrices in the configuration with disjoint support whose sum is the identity
matrix, and such matrices are called the fibers of the configuration. A coherent configuration that has only
one fiber, that is, contains I as one of its matrices, is called homogeneous, and we define an association
scheme as a homogeneous coherent configuration. Naturally, if each matrix Ai is symmetric, we say that the
configuration is symmetric, and if the matrices Ai commute with respect to matrix multiplication, we say
that the configuration is commutative.

4.1.2 Group Configurations

Let us remind the reader that if X = {x1, ..., xn} is a set with n elements, then the group Sn acts on X by
permuting its elements, and we will represent these permutations in cyclic notation, e.g., (1, 2) represents the
permutation that maps x1 to x2 and vice versa, etc. With this, we can discuss an example of a configuration.

Example 4.1.2 (Dihedral Group Configuration). Consider the dihedral group D4 of symmetries of a square,
acting on the set X = {1, 2, 3, 4}. The group acts on X × X by g(x, y) = (gx, gy) for any g ∈ D4 and
x, y ∈ X, and thus this action has three orbits:

R0 = {(1, 1), (2, 2), (3, 3), (4, 4)}
R1 = {(1, 2), (2, 3), (3, 4), (4, 1), (3, 2), (2, 1), (1, 4), (4, 3)}
R2 = {(1, 3), (2, 4), (3, 1), (4, 2)},

and the corresponding adjacency matrices are given by

A0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , A1 =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 , A2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .
It is easy to see that A0 +A1 +A2 = J , each matrix that is not A0 has a zero diagonal and is symmetric, and

A1A1 = 2I + 0A1 + 2A2

A1A2 = A2A1 = 0I + 1A1 + 0A2

A2A2 = 1I + 0A1 + 0A2,

thus {A0, A1, A2} is a symmetric association scheme.

We will show that the previous example illustrates a general phenomenon: if G acts on X, we can
always obtain a coherent configuration from a group by considering its orbits, that is, the orbits R0, ..., Rd
of the induced action of G on X × X given by g(x, y) = (gx, gy). This configuration is denoted by
Inv(G,X) := (X, {Ri}di=0), and is called the orbit configuration of the group.

Theorem 4.1.3 (Orbit Configuration). Inv(G,X) is a coherent configuration. In particular, if x ∈ X, then
the orbits of the stabilizer Gx of x in X are given by the sets Ri(x), and Inv(G,X) is an association scheme
if and only if G acts transitively on X.
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Proof. It is clear that the orbits R0, ..., Rd partition X ×X, and that if an orbit contains an element of the
form (x, x), then all its elements are of the form (gx, gx) for g ∈ G, that is, this orbit will be a relation
contained in {(x, x)|x ∈ X}, and if Ri = G(x, y) is an orbit, then Ri′ = G(y, x) will be another orbit where
Ri′ = RTi . Thus, conditions (1), (2), and (3) of the definition of a configuration are satisfied. To show
condition (4), note that for any g ∈ G and x, y ∈ X, we have

(AiAj)g(x,y) = |Ri(gx) ∩Rj′(gy)|
= |g(Ri(x)) ∩ g(Rj′(y))|
= |g(Ri(x) ∩Rj′(y))|
= |Ri(x) ∩Rj′(y)| = (AiAj)xy,

where the equalities follow from the fact that g is a permutation of the elements of X. Thus, AiAj is constant
on the orbit of (x, y), and therefore it is a linear combination of the matrices Al, proving that {A0, ..., Ad}
is a coherent configuration. Naturally, the fibers of this scheme correspond to the orbits of G in X, and
therefore G is transitive if and only if this configuration is homogeneous, i.e., if it is an association scheme.
Finally, note that each set Ri(x) is invariant under the action of Gx, so it is a disjoint union of orbits of Gx,
but on the other hand, if (x, y), (x, z) ∈ Ri, then there exists g ∈ G such that g(x, y) = (x, z), so g ∈ Gx and
therefore Ri(x) is contained in a single orbit of Gx, and it follows that Ri(x) is an orbit of Gx. ■

The structure of the configuration Inv(G,X) reflects some structural properties of the group G. In
particular, we say that the action of G on X is generously transitive if for any x, y ∈ X, there exists g ∈ G
such that gx = y and gy = x, that is, g(x, y) = (y, x) and g(y, x) = (x, y), and therefore Inv(G,X) is
symmetric if and only if G acts generously transitively. We say that G is 2-transitive if the action of G
on the set {(x, y)|x, y ∈ X,x ≠ y} is transitive, that is, G is 2-transitive if and only if Inv(G,X) has only
two relations R0, R1. It can be proven that the symmetric group Sn acting on {1, ..., n} is 2-transitive, so
Inv(Sn, {1, ..., n}) will have only two relations whose adjacency matrices are I and J − I.

Now we will see another extremely important construction that relates groups and association schemes,
called the conjugacy class scheme.

Theorem 4.1.4 (Conjugacy Class Scheme). Let G be a group with conjugacy classes C0 = {1}, C1, ..., Cd,
and define

Ri = {(x, y)|x, y ∈ G, y−1x ∈ Ci}.

Then (X, {R0, ..., Rd}) is a commutative association scheme.

Proof. First, we note that the group H = G×G = {(x, y)|x, y ∈ G} — viewed as a direct product of groups
— acts on G as follows:

(x, y)g = xgy−1,

and consequently H also acts on the Cartesian product G×G via

(x, y)(g, h) = (xgy−1, xhy−1).

Our strategy will be to show that the orbits of this action are the sets Ri, and this, together with the previous
result, will imply the result. To do this, first note that each Ri is invariant under the action of H, because if
(x, y) ∈ H and (g, h) ∈ Ri, we have

(xhy−1)−1xgy−1 = yh−1x−1xgy−1 = (h−1g)y−1 ∈ Ci,

because h−1g ∈ Ci and Ci is a conjugacy class. On the other hand, H is transitive on Ri, because
given (g1, h1), (g2, h2) ∈ Ri where h−1

1 g1, h
−1
2 g2 ∈ Ci, take h ∈ G such that (h−1

1 g1)h = h−1
2 g2, and define

x = h1hh
−1
2 , y = h, and note that

(x, y)(g1, h1) = (h2h
−1h−1

1 g1h, h2h
−1h−1

1 h1h) = (g2, h2),
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and it follows that each Ri is an orbit of H, and thus we indeed have an association scheme. To show that
the scheme is commutative, consider a pair g, h ∈ Rl where h−1g ∈ Cl, and therefore (h−1g)h−1 = gh−1 ∈ Cl,
implying that (h−1, g−1) ∈ Rl. Then, we consider the sets

F1 = {a ∈ G|(g, a) ∈ Ri, (a, h) ∈ Rj} and F2 = {a ∈ G|(h−1, a) ∈ Rj , (a, g−1) ∈ Ri},

where |F1| = plij , |F2| = plji, and then we consider the map a 7→ a−1 from F1 to F2, noting that (g, a) ∈ Ri
if and only if (a−1, g−1) ∈ Ri and (a, h) ∈ Rj if and only if (h−1, a−1) ∈ Rj , so the map is bijective, and
therefore plij = plji, as desired. ■

The conjugacy class scheme is extremely important, and we will see in future sections that the eigenvalues
of the matrices of this scheme are closely related to the irreducible representations of the group. Below we
display the conjugacy class scheme of the group S3.

Example 4.1.5. Let S3 = {1, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}, and note that this group has three
conjugacy classes:

C0 = {1}, C1 = {(1, 2), (1, 3), (2, 3)}, C2 = {(1, 2, 3), (1, 3, 2)}.

We can explicitly compute the relations R0, R1, R2, and from that, we obtain the matrices

A0 = I, A1 =



0 1 1 1 0 0
1 0 0 0 1 1
1 0 0 0 1 1
1 0 0 0 1 1
0 1 1 1 0 0
0 1 1 1 0 0


, A2 =



0 0 0 0 1 1
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 0 0
1 0 0 0 0 1
1 0 0 0 1 0


,

and it follows that

A2
1 = 3I + 2A2,

A2
2 = 2I +A2,

A1A2 = A2A1 = 2A1.

4.1.3 The Johnson and Hamming Schemes

Now, we will use the previous result to construct two extremely important association schemes: the Johnson
scheme and the Hamming scheme. The Johnson scheme J (n, d) is constructed from a base set V of size n,
and a constant d such that n ≥ 2d. We define X as the set of all subsets of V of size d, and then we take

Ri = {(x, y)|x, y ∈ X, |x ∩ y| = d− i},

that is, we group all pairs that have an intersection of size exactly d− i in the relation Ri. The scheme is
then given by J (n, d) = (X, {Ri}di=0). Note that the group Sn acts on X as follows: if x = {x1, ..., xd} and
σ ∈ Sn, then

σ{x1, ..., xd} = {σx1, ..., σxd},

and with this, we will show that the orbits of this action are precisely the sets Ri, i.e., that J (n, d) =
Inv(Sn, X). To do this, we will calculate the size of each Ri, and then use the Orbit-Stabilizer Theorem
to conclude the result. But first, it is worth remembering that if G is a group acting on X, then a subset
S ⊆ X is an orbit if and only if S is G-invariant – that is, if gs ∈ S for all g ∈ G, s ∈ S –, and if G acts
transitively on S.

Proposition 4.1.6. J (n, d) is a symmetric association scheme.
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Proof. First, we show that the action of G = Sn is generously transitive on X. Given x, y ∈ X such that
(x, y) ∈ Ri, we can write

x = {x1, ..., xi, xi+1, ..., xd} and y = {y1, ..., yi, xi+1, ..., xd},

that is, {x1, ..., xi} ∩ {y1, ..., yi} = ∅, and then we define the permutation

σ = (x1, y1)(x2, y2)...(xi, yi),

that is, the product of transpositions that maps x1 to y1, x2 to y2, up to xi to yi, and fixes the other elements
of X. It follows that σx = y and σy = x, so the action is generously transitive, and thus each relation Ri
is symmetric. We will now count the number of elements in each Ri to conclude that these are the orbits
of G on X, and this, together with the previous result, will imply the desired result. If we fix an arbitrary
element x ∈ X, there are (

d

i

)
·
(
n− d

i

)
elements y ∈ X such that (x, y) ∈ Ri, that is, the cardinality of Ri is given by

|Ri| =
(
n

d

)
·
(
d

i

)
·
(
n− d

i

)
.

On the other hand, if we fix (x, y) ∈ Ri, there are i! · i! · (d− i)! · (n− d− i)! ways to construct a permutation
that fixes (x, y), that is, this is the size of the stabilizer G(x,y), and then from the Orbit-Stabilizer Theorem
we obtain that

|G(x, y)| = n!
i! · i! · (d− i)! · (n− d− i)! = |Ri|,

and since G(x, y) ⊆ Ri – that is, Ri is G-invariant –, it follows that Ri is an orbit, as we wanted. ■

The Hamming scheme H(d, q) is constructed from a set F with q elements – called the alphabet – and
then we consider the set

X = F × F × . . .× F (d times)
of tuples of size d with elements in F . We can think of elements of this set as strings of size d with elements
from the alphabet F , e.g., if q = 2, then we are dealing with all binary strings of size d. If x, y ∈ X, we define

∂(x, y) := |{i|xi ̸= yi}|,

that is, ∂(x, y) is a metric that calculates how many entries differ between x and y, and then we can consider
the sets

Ri = {(x, y)|x, y ∈ X, ∂(x, y) = i}.
The Hamming scheme is then given by H(d, q) = (X, {Ri}di=0). We can consider the group S = (Sq)d given
by the direct product of d copies of Sq, and note that S acts on X via

(σ1, ..., σd)(x1, ..., xd) = (σ1x1, ..., σdxd),

for any σ = (σ1, ..., σd) ∈ S, (x1, ..., xd) ∈ X, that is, S acts on X by permuting each entry within the
alphabet F . On the other hand, we can consider the group Sd acting on X by permuting the coordinates:

σ(x1, ..., xd) = (xσ−1(1), ..., xσ−1(d)),

and we can note that the composition of these actions, that is, first permuting the entries according to S, and
then permuting the coordinates, defines an action on X. If we consider S and Sd as subgroups of Sym(X), it
follows that the first is normal but the second is not, and therefore we can consider the subgroup G = SSd,
which will be an internal semidirect product, that is,

G = S ⋊ Sd ⊆ Sym(X).

We will show that H(d, q) = Inv(G,X).
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Proposition 4.1.7. H(d, q) is a symmetric association scheme.

Proof. Similarly to what was done for the Johnson scheme, we first show that the action of G on X is
generously transitive. To do this, take elements

x = (x1, ..., xd) and y = (y1, ..., yd)

from X, and consider the permutation σ ∈ S given by

σ = ((x1, y1), ..., (xd, yd)),

so that σx = y, σy = x, and therefore the action is indeed generously transitive. The set Ri is clearly
G-invariant, so it remains to show that G acts transitively on Ri. Fix (x, y), (w, z) ∈ Ri, and assume that

x = (x1, ..., xi, xi+1, ..., xd) and y = (y1, ..., yi, xi+1, ..., xd),
w = (w1, ..., wi, wi+1, ..., wd) and z = (z1, ..., zi, wi+1, ..., wd),

that is, we group the i distinct elements between x and y (resp. w and z) in the first i entries of the tuple,
and the remaining common elements in the last d− i entries. We can assume the elements are in this form
since there always exists a permutation of the coordinates in Sd that maps any (x, y) to a tuple like the
above. Then consider the permutation given by

σ = ((x1, w1), ..., (xd, wd)),

that is, σ maps each entry of x to the respective entry of w, so that σx = w, and σy = (σ1y1, ..., σiyi, wi+1, ...wd),
where σi = (xi, wi). With this, we can take the permutation τ given by

τ = ((σ1y1, z1), ..., (σiyi, zi), 1, ..., 1),

that is, τ maps the first i entries of σy to z, and fixes the others. But since the last d− i entries of σy are
equal to the last entries of w, which in turn are equal to those of z, it follows that τσy = z. Now note that

τw = ((σ1y1, z1)w1, ..., (σiyi, zi)wi, wi+1, ..., wd),

so if j ≤ i, the entries (σjyj , zj)wj will be different from wj if and only if wj = zj or wj = σjyj . The first
case is false by assumption, and if the second is true, this would imply that

wj = σjyj = (xj , wj)yj ,

so xj = yj , which is also false by assumption, so (σjyj , zj)wj = wj , and thus τw = w. Therefore, we have
τσ(x, y) = (w, z), which means that G acts transitively on each Ri and therefore these are precisely the
orbits of the action of G on X, as we wanted. ■

The construction of the group G used in the previous proposition illustrates a more general phenomenon
that can be observed in groups, and which would be analogous to a kind of exponentiation. If G,H are
groups, and if H acts on a finite set X of size d, we can consider the group Gd of tuples of size d of elements
from G, and define an action of H on G by permuting the coordinates. From this, we can define the so-called
Wreath product as

G ≀H := (G)d ⋊H.

The example of the Hamming scheme is an excellent motivation for this definition, as it provides a scenario
where we can permute strings in two ways: (i) by permuting each entry within the alphabet, or (ii) by
permuting the coordinates of the string.

58



4.2 Coherent Algebras

In the previous section, we saw some basic properties of configurations and schemes, but perhaps the most
important thing about these objects is the fact that we can naturally associate an algebra to any configuration.
If C is a configuration with adjacency matrices A0, . . . , Ad, we can consider the subspace

A = {
d∑
i=0

αiAi | αi ∈ C}

generated by these matrices. This is, by construction, a subspace of dimension d+ 1 of Mn(C), but note
that by condition (4) of the definition of a configuration, the products AiAj can be expressed as a linear
combination of the adjacency matrices, so A is a C-algebra, with unit given by I and containing the
matrix J . On the other hand, since the matrices Ai have entries in {0, 1} and ∑iAi = J , it follows that
Ai ◦Aj = 0 if i ̸= j, meaning that A is also an algebra with respect to the Schur product. Furthermore, since
ATi ∈ {A0, . . . , Ad}, it follows that A is a ∗-algebra. The algebra A is called the coherent algebra associated
with the configuration C, and in the case of commutative schemes, this algebra is called the Bose-Mesner
algebra. From these observations, we can note that the adjacency matrices of C are the Schur basis of the
algebra in question, that is, the unique basis of primitive orthogonal idempotents with respect to the Schur
product, and therefore, we can also refer to the adjacency matrices as the Schur basis of the configuration.

In general, we say that an algebra A ⊆ Mn(C) is coherent if it contains I, J , and is closed under the
Schur product and the conjugate transpose map, that is, it is also a ∗-algebra and an algebra with respect
to the Schur product. Using the results from Chapter 3, we can establish an equivalence between coherent
algebras and configurations.

Proposition 4.2.1. If A is a coherent algebra, then its Schur basis is a coherent configuration.

Proof. By Lemma 3.3.1, we know that every algebra with respect to the Schur product has a unique Schur
basis A0, . . . , Ad, and since A contains J , it follows that

d∑
i=0

Ai = J.

Since A is an algebra, it follows that AiAj ∈ A, and since these are 01 matrices, there exist non-negative
integers plij such that

AiAj =
d∑
l=0

plijAl.

Since A is closed under conjugate transpose, we have that {AT0 , AT1 , . . . , ATd } is a Schur basis for A, so

{A0, . . . , Ad} = {AT0 , AT1 , . . . , ATd },

meaning there exists some i′ such that ATi = Ai′ . Finally, given any Ai, since I ∈ A, it follows that

Ai = Ai ◦ I +Ai ◦ (J − I),

where Ai ◦ I, Ai ◦ (J − I) ∈ A and (Ai ◦ I) ◦ (Ai ◦ (J − I)) = 0, and since Ai is primitive, this implies that
Ai ◦ I = 0 or Ai ◦ (J − I) = 0, meaning that if Ai has any diagonal entry, then Ai is a diagonal matrix, which
concludes the proof. ■

Therefore, every coherent algebra has a Schur basis that is a coherent configuration, and every coherent
configuration is a Schur basis of a coherent algebra. From the results in the previous chapter, it follows
that any coherent algebra is semisimple, meaning we can find its centrally primitive orthogonal idempotents
E0, . . . , Em and decompose the algebra as

A =
m∏
i=0

AEi,

and with this, it is possible to find an orthogonal basis that block-diagonalizes all the matrices in A.
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4.3 Commutative Schemes

Throughout this section, let C = (X, {Ri}di=0) be a commutative association scheme where |X| = n, with
Bose-Mesner algebra A and Schur basis {A0 = I, A1, . . . , Ad}. Since A is commutative, we know from
Theorem 3.3.2 that the primitive idempotents E0, . . . , Ed will also form an orthogonal basis for the algebra A,
and by the construction of these idempotents, we have that E∗

i = Ei, and each Ei is an orthogonal projector
onto a subspace of the matrices in the Schur basis. The fact that these two sets of matrices form orthogonal
bases for A is perhaps the most useful property for applications, and now we will see how to derive algebraic
relations between these bases and the parameters of A.

The following basic properties about the parameters of a commutative association scheme can be
demonstrated by simple counting arguments and algebraic manipulations, and therefore we leave the proof
to the reader.

Proposition 4.3.1. For any indices i, j, l,m ∈ {0, . . . , d}, the following hold for the parameters plij of a
commutative association scheme:

(1) If ki := p0
ii′ , then k0 = 1, ki = ki′ , n = ∑

i ki, and ki ≥ 0;

(2) pli0 = δli, pl0j = δlj , p0
ij = kiδij′ , and plij = pl

′
i′j′ ;

(3) ki = ∑d
j=0 p

l
ij and klp

l
ij = kip

i
lj′ = kjp

j
i′l;

(4) ∑d
t=0 p

t
ijp

l
mt = ∑d

t=0 p
t
mip

l
tj .

■

Naturally, in the case of symmetric schemes, i′ = i for any i, so the previous expressions simplify
significantly. Now, we note that (1/n)J will always be a primitive idempotent of A, because if we assume
without loss of generality that JE0 = α0E0 with α0 ̸= 0, then

α0E0 = JE0 = 1
n
J2E0 = 1

n
JE0J = 1

TE01

n
J,

and using that E2
0 = E0, we can conclude that E0 = (1/n)J . In the case of distance-regular graphs, this fact

is quite natural: each matrix in the Schur basis induces a regular graph, so 1 is an eigenvector with a simple
eigenvalue equal to the degree of that graph. We can also express the elements of the Schur basis in terms of
the primitive idempotents, and vice versa. That is, there exist constants Pli, Qli ∈ C such that

Ai =
d∑
l=0

PliEl and Ei = 1
n

d∑
l=0

QliAl,

and then, if we construct matrices P,Q ∈ Md+1(C) with entries (P )ij = Pij , (Q)ij = Qij , we obtain that P is
the change-of-basis matrix from the Schur basis to the idempotent basis, and (1/n)Q is the change-of-basis
matrix from the idempotent basis to the Schur basis. Thus,

PQ = nI = QP.

Since the idempotents are projectors onto subspaces, it follows that the i-th column of P contains the
eigenvalues of Ai, that is, AiEl = PliEl, and the matrix P is therefore called the first eigenmatrix of the
scheme (or also the first character table of the scheme). Similarly, it holds that Ei ◦ Al = QliAl, and the
matrix Q is called the second eigenmatrix of the scheme (or also the second character table of the scheme).
It is important to observe that if we fix an idempotent El, the multiplicity of the eigenvalues Pli for the
matrices Ai will be precisely tr(El) = ml, and these values are called the multiplicities of the scheme, and by
definition, we have that Q0l = ml. With these observations, we prove the following statement:

Proposition 4.3.2. For any l ∈ {0, . . . , d}, the following hold for the matrices P,Q of a commutative
association scheme:
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(1) Pl0 = Ql0 = 1;

(2) P0l = kl and Q0l = ml, where kl = p0
ll.

■

We recall that if Ai is one of the matrices in the Schur basis, there exists a unique index i′ such that
ATi = Ai′ , and similarly, if Ei is a primitive idempotent, there exists a unique index î such that ETi = Eî = Ei.
With this, we can prove the so-called orthogonality relations between the values of P and Q:

Theorem 4.3.3 (Orthogonality Relations). The following relations hold for the matrices P,Q for any indices
i, j, l ∈ {0, . . . , d}:

(1) Pli = Pli′ ;

(2) Qli = Ql̂i;

(3) Pliml = Qilki;

In particular, we have that

d∑
l=0

PilPjl
kl

=
{

n
mi
, if i = j,

0, otherwise,
and

d∑
l=0

PliPljml =
{
nki, if i = j,

0, otherwise.

Proof. (1) It is enough to use that Ai′El = Pli′El and apply the conjugate transpose to both sides.

(2) It is enough to use that Eî ◦Al = Ql̂iAl and apply the conjugate to both sides.

(3) First, note that tr(AiEl) = Pliml, but on the other hand, we also have that El = ∑d
j=0QjlAk, so

AiEl = 1
n

d∑
j=0

QjlAiAj = 1
n

d∑
j=0

d∑
t=0

Qjlp
t
ijAt,

and thus tr(AiEl) = ∑d
j=0Qjlp

0
ij = Qilki, as we wanted.

The last two relations are obtained by combining the fact that PQ = QP = nI with item (3). ■

Now we note that since A is closed under the Schur product, we can find constants qlij such that

Ei ◦ Ej = 1
n

d∑
l=0

qlijEl,

and these constants are the so-called Krein parameters of the scheme. We will soon show that these parameters
are non-negative real numbers, but before that, we prove the following result:

Proposition 4.3.4. For any indices i, j, l ∈ {0, . . . , d}, the following hold:

(1) PliPlj = ∑d
t=0 p

t
ijPlt;

(2) QliQlj = ∑d
t=0 q

t
ijQlt;

(3) PjiQlj = ∑d
t=0 p

l
itQtj ;

(4) plij = 1
nkl

tr(AiAjAl′);

(5) qlij = n
ml

tr((Ei ◦ Ej)El).
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Proof. (1) It is enough to note that

PliPljEl = AiAjEl =
d∑
t=0

ptijAtEl = (
d∑
t=0

ptijPlt)El.

(2) Similarly, we have

QliQljAl = Ei ◦ Ej ◦Al =
d∑
t=0

qtijEt ◦Al = (
d∑
t=0

qtijQlt)Al.

(3) From item (1), we have

Pji′Pjl =
d∑
t=0

pti′lPjt,

and from the previous proposition, we know that Pjl = 1
mj
klQlj and Pjt = 1

mj
ktQtj . Using these

substitutions and taking the conjugate of both sides, we get

klPjiQlj =
d∑
t=0

ktp
t
i′lQtj ,

and then using that ktpti′l = klp
l
it, we obtain the desired result.

(4) Note that

AiAjAl′ =
d∑
t=0

ptijAtAl′ =
d∑
t=0

d∑
m=0

ptijp
m
tl′Am,

so the trace of AiAjAl′ , which depends only on the coefficient of I in the sum on the right-hand side of
the equation, will be

tr(AiAjAl′) =
d∑
t=0

nptijp
0
tl′ = nklp

l
ij ,

as required.

(5) Similarly, we have

(Ei ◦ Ej)El = 1
n

d∑
t=0

qtijEtEl =
qlij
n
El,

so
tr((Ei ◦ Ej)El) =

qlijml

n
,

which concludes the proof.
■

It is easy to check from item (5) of the previous result that the Krein parameters are real numbers, and
with a little more effort, it is also possible to check that they are always non-negative. However, since we do
not need this fact in this work, we refer the reader to [Ter23, Cap. 4] for more details. To conclude this
section, we will show a bound involving the multiplicities of a scheme:

Proposition 4.3.5. If m0,m1, . . . ,md are the multiplicities of a commutative association scheme, then

∑
ql

ij ̸=0

ml ≤
{
mimj , if i ̸= j,
mi(mi+1)

2 , if i = j.
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Proof. Let A,B ∈ Mn(C) be matrices with ranks mA and mB, respectively, and write

A =
mA∑
i=1

viv
∗
i and B =

mB∑
i=1

xix
∗
i ,

that is, we write each matrix as a sum of linearly independent rank-1 matrices, and from this, we obtain that

A ◦B =
∑
i,j

(vi ◦ xj)(vi ◦ xj)∗,

so A ◦B is a sum of at most mAmB linearly independent rank-1 matrices, which implies that rk(A ◦B) ≤
rk(A)rk(B). If A = B, then we note that there are at most

(mA+1
2
)

linearly independent rank-1 matrices, so
rk(A ◦A) ≤

(rk(A)+1
2

)
. Now, note that since the matrices Ei are orthogonal idempotents, it follows that

rk(Ei ◦ Ej) =
∑
ql

ij ̸=0

rk(El) =
∑
ql

ij ̸=0

ml,

and then, it is enough to combine this with the previous observations to conclude the result. ■

4.4 Distance-Regular Graphs

4.4.1 Definition and Basic Properties

The main example of association schemes are the so-called distance-regular graphs, and much of the theory
about configurations and schemes arises from generalizations of properties exhibited by these graphs. To
introduce the subject, we start with an example. In the previous section, we discussed the Johnson scheme
J (n, d) formed by the set of d-subsets of a set with n elements, where the relation Ri is formed by pairs
(x, y) whose intersection size is precisely d− i. This scheme is symmetric, meaning that we can view each
matrix Ai associated with the relation Ri for i > 0 as a simple, undirected, and loopless graph. There are
two graphs in this scheme that are particularly interesting: the graph Ad – where two sets x, y are related if,
and only if, |x ∩ y| = 0 – called the Kneser graph K(n, d), and the graph A1 – where two sets are related
if, and only if, |x ∩ y| = d− 1 – called the Johnson graph J(n, d). The images in Fig.1 illustrate the case
J (5, 2), where J(5, 2) and K(5, 2) are complementary.

(a) Petersen graph constructed as K(5, 2). (b) Johnson graph J(5, 2).

Fig. 1: The two graphs obtained from the Johnson scheme J (5, 2).

On the other hand, we can note that (x, y) ∈ Ri if, and only if, the distance between vertices x and y in
J(n, d) is precisely i, i.e., the length of the shortest path between these vertices in the Johnson graph is given
by i. This means that we can also view the matrices I, A1, . . . , Ad of the scheme J (n, d) as the distance
matrices of the Johnson graph, that is, the matrices that relate vertices at distance i.

This example motivates the general definition of a distance-regular graph: if X is a connected k-regular
graph with diameter d – that is, the size of the longest path in X is d – with adjacency matrix A, then we say
that X is distance-regular if the matrices {I, A1 = A,A2, . . . , Ad} form a symmetric association scheme. Let
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us now study the combinatorial implications of this definition. First, we note that the parameters kl = p0
ll

of the scheme are precisely the degrees of the graphs induced by the matrices Ai, i.e., the graph of Ai is
ki-regular, and we also note that since the distance in a graph is a metric, we can use the triangle inequality
to obtain that if plij ̸= 0, then l ≤ i+ j, j ≤ i+ l, and i ≤ j+ l, and in particular, pij1 = 0 if j /∈ {i− 1, i, i+ 1}.
With this, we can define the main parameters for a distance-regular graph:

• ci = pi(i−1)1, that is, given vertices u, v at distance i, ci is the number of neighbors of v that are at
distance i− 1 from u, i.e., closer;

• bi = pi(i+1)1, that is, bi is the number of neighbors of v that are at distance i+ 1 from u, i.e., farther
away;

• ai = k − bi − ci, that is, ai is the number of neighbors of v that are the same distance from u as v.

If we fix any vertex u and partition the other vertices of the graph according to their distance from u, we
obtain the following diagram:

Fig. 2: Distance diagram [VDKT16, Figure 1].

It is always possible to perform this type of partition in any connected graph, but the fact that the graph
is distance-regular shows us that the parameters of this diagram are the same regardless of which vertex u
we fix. In fact, this is one possible definition of distance-regular graphs: if the parameters of the distance
partition are the same regardless of the choice of the fixed vertex, then we say the graph is distance-regular.
With this, we can count the number of edges between two components i, i+ 1 of the partition in question
in two ways: first, we note that there are kibi edges from the component i to i+ 1, but on the other hand,
there are ki+1ci+1 edges from the component i+ 1 to i, i.e., we obtain that

ki+1 = kibi
ci+1

,

and naturally, we have n = 1 + k1 + · · · + kd. From now on, we will denote by Xi the relation given by the
matrix Ai (and we will also treat Xi as a graph when necessary), where (Ai)uv = 1 if the distance between u
and v is precisely i, and similarly, we will denote by Xi(u) the set of vertices adjacent to u in Ai. With this,
we can show the following characterization of distance-regular graphs:

Theorem 4.4.1. Let X be a k-regular and connected graph with diameter d and adjacency matrix A. Then
X is distance-regular if, and only if, there exist non-negative integers ki, bi, ci such that |Xi(v)| = ki for any
v ∈ V (X), and for any u ∈ Xi(v), it holds that

|X1(u) ∩Xi−1(v)| = ci,

|X1(u) ∩Xi+1(v)| = bi.

Proof. The forward direction is immediate from the previous considerations, so assume there exist integers
ki, bi, ci satisfying the stated properties, and define ai = k − bi − ci. We now want to show that the matrices
I, A,A2, . . . , Ad form a symmetric association scheme, and for this, it is enough to check that condition (4)
of the definition holds. It will be useful to define A−1 = Ad+1 = 0 and leave cd+1, b−1 free (their values will
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not be relevant). With this, we note that

(AAi)uv = |X1(u) ∩Xi(v)| =


bi−1, if u ∈ Xi−1(v),
ai, if u ∈ Xi(v),
ci+1, if u ∈ Xi+1(v),

that is, for any i ∈ {0, ..., d}, it holds that

AAi = bi−1Ai−1 + aiAi + ci+1Ai+1.

We can apply induction on i to show that Ai is always a polynomial in A of degree i, and also that
Ai ∈ span({I, A,A2, ..., Ai}). In fact, the cases for i = 0 or i = 1 are immediate, and if i = 2, we have

A2 = b0I + a1A+ c2A2,

so A2 is a linear combination of I, A,A2, and since c2 ̸= 0 (because X is connected), we have that A2 is a
polynomial ν2(A) of degree 2 in A, given by

c2A2 = c2ν2(A) = A2 − a1A− b0I.

If the result holds for i, then it follows clearly that

ci+1Ai+1 = ci+1νi+1(A) = Aνi(A) − aiνi(A) − bi−1νi−1(A),

so Ai+1 is a polynomial of degree i+ 1 in A. Now, let Ai = ∑i
l=0 αlAl, where αl ∈ C, then

Ai+1 =
i∑
l=0

αlAlA,

and using that AlA is a linear combination of Al−1, Al, Al+1, it follows that Ai+1 is in span({I, A,A2, ..., Ai+1}),
which concludes the induction. This shows that AiAj is a polynomial in A, and since

AAd = bd−1Ad−1 + adAd,

it follows that this polynomial has degree at most d, so AiAj ∈ span({I, A,A2, ..., Ad}), as required. ■

This result shows that a distance-regular graph X is completely determined by the parameters ki, bi, ci,
so we can define the intersection array of X as

ι(X) := {b0, b1, ..., bd−1; c1, ..., cd}.

In general, given an intersection array, it is not an easy task to determine whether there are distance-regular
graphs with these parameters, and it is also difficult to determine if a distance-regular graph is the only
one with a given array (up to isomorphism). The Petersen graph has an array given by {3, 2; 1, 1}, and
it is possible to prove that it is determined by this array as a distance-regular graph, that is, any other
distance-regular graph with this array is isomorphic to the Petersen graph. The smallest intersection array
that corresponds to a pair of non-isomorphic graphs is {6, 3; 1, 2}, as both the Hamming graph H(2, 4) and
the Shrikhande graph have exactly this same array (for more details, we refer the reader to [VDKT16, Ch.2]).

4.4.2 Spectrum

Given a graph X with adjacency matrix A, we can consider the polynomial algebra C[A] in A — in this case,
called the adjacency algebra of X — and note that it contains all the powers of A. Since A is the adjacency of
a graph, the entries uv of Ar count the number of walks of length r between vertices u and v, that is, if d is
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the diameter of X, then the matrices I, A,A2, ..., Ad form a linearly independent set in C[A]. Therefore, the
dimension of C[A] — which is precisely the number of distinct eigenvalues of A — is at least d+ 1, that is,

|Dspec(A)| ≥ d+ 1,

where Dspec(A) is the set of distinct eigenvalues of A. If X is distance-regular, we can consider the Bose-
Mesner algebra A generated by the matrices I, A,A2, ..., Ad, and then note that Theorem 4.4.1 tells us that
A = C[A], that is, the adjacency algebra of X is equal to the algebra generated by its distance matrices, since
each Ai is a polynomial in A. We saw in Example 3.1.1 that the dimension of C[A] is precisely |Dspec(A)|,
and with this we prove the following statement:

Proposition 4.4.2. If X is a distance-regular graph with diameter d and Bose-Mesner algebra A =
C[I, A, ..., Ad], then C[A] = A and

|Dspec(A)| = d+ 1.

■

If we consider a distance-regular graph X with diameter d, we can define a tridiagonal matrix

L =



a0 b0 0 0 . . . 0
c1 a1 b1 0 . . . 0
0 c2 a2 b2 . . . 0
...

... . . . . . . . . . ...
0 0 . . . cd−1 ad−1 bd−1
0 0 . . . 0 cd ad


,

where L ∈ Md+1(R), known as the intersection matrix. We will now show that the eigenvalues of L coincide
with the eigenvalues of A. The first important fact about L is that it is diagonalizable, because if we define
the diagonal matrix ∆ = Diag(k0, ..., kd), noting that

bi
√
ki√

ki+1
= ci+1

√
ki+1√
ki

,

we conclude that ∆1/2L∆−1/2 is symmetric. We observe that if x = (x0, . . . , xd) is an eigenvector of L
associated with the eigenvalue θ, then

θxi = cixi−1 + aixi + bixi+1

for any i ∈ {0, ..., d}, where c0 = bd = 0, so we do not need to define x−1 and xd+1. Additionally, we observe
that x0 ̸= 0 (otherwise the previous recursion would give x = 0), so we can always assume that x0 = 1, which
in turn implies that x1 = θ/k — this form of writing x is usually called the standard sequence with respect
to θ. Now we can prove that L has exactly d+ 1 distinct eigenvalues and that Dspec(A) = Dspec(L).

Proposition 4.4.3. If X is a distance-regular graph with diameter d, then

Dspec(L) = Dspec(A).

Proof. Let x = (1, θ/k, x2, . . . , xd) be the standard sequence with respect to θ, and fix a vertex v of X. Define
an n-dimensional vector z by zu = xD(u,v), for all u ∈ X, so that, if ai denotes the v-th column of the i-th
distance matrix Ai, we have

z =
d∑
i=0

xiai.
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Now, we observe that

Az =
d∑
i=0

xiAai

=
d∑
i=0

xi(bi−1ai−1 + aiai + ci+1ai+1)

=
d∑
i=0

(cixi−1 + aixi + bixi+1)ai

= θz,

where the second equality follows from the identity

AAi = bi−1Ai−1 + aiAi + ci+1Ai+1,

and the third equality follows by noting that each entry in aj appears exactly three times in the sum when
i ∈ {j − 1, j, j + 1}. This shows that Dspec(L) ⊆ Dspec(A). Now, observe that

L− θI =



−θ b0 0 0 . . . 0
c1 a1 − θ b1 0 . . . 0
0 c2 a2 − θ b2 . . . 0
...

... . . . . . . . . . ...
0 0 . . . cd−1 ad−1 − θ bd−1
0 0 . . . 0 cd ad − θ


,

and since the ci are all non-zero for i ∈ {1, ..., d}, it follows that rk(L− θI) ≥ d, so null(L− θI) ≤ 1, which
implies that the eigenspace of each eigenvalue has dimension 1, so |Dspec(L)| = d+ 1, which completes the
proof. ■

We can also calculate the multiplicities of each eigenvalue of A from the standard sequences of L.

Theorem 4.4.4 (Bigg’s Formula). Let X be a distance-regular graph with diameter d, and let x =
(1, θ/k, . . . , xd) be the standard sequence associated with an eigenvalue θ of L. Then, the multiplicity m(θ)
of θ as an eigenvalue of A is given by:

m(θ) = n∑d
i=0 x

2
i ki

.

Proof. Let E be the projection onto the eigenspace of θ of A, and note that since X is distance-regular,
E ∈ C[I, A, . . . , Ad], so we can write

d∑
i=0

αiAi.

We observe that the diagonal entries of E are constant and equal to α0, so m(θ) = nα0. We also observe that

θE = AE =
d∑
i=0

αiAAi

=
d∑
i=0

αi(bi−1Ai−1 + aiAi + ci+1Ai+1)

=
d∑
i=0

(ciαi−1 + aiαi + biαi+1)Ai.

On the other hand, θE = ∑d
i=0 θαiAi, so

θαi = ciαi−1 + aiαi + biαi+1,
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from which we conclude by induction on i that αi = α0xi. From the expression for E as a linear combination
of the Ai’s, we obtain

E2 =
d∑
l=0

d∑
i=0

d∑
j=0

(αiαjplij)Al,

and observing that p0
ij = 0 if i ̸= j and p0

ii = ki, we conclude that the diagonal entries of E2 are constant
and equal to ∑d

i=0 α
2
i ki. Since E2 = E, and given that the diagonal entries of E are α0, it follows that

α0 = ∑d
i=0 α

2
i ki. Using that αi = α0xi, we obtain

α0 = 1∑d
i=0 x

2
i ki

.

Thus, we conclude that
m(θ) = tr(E) = nα0 = n∑d

i=0 x
2
i ki

,

as desired. ■

The previous results show us that it is always possible to calculate the eigenvalues of A with their
multiplicities from the matrix L. This is extremely practical, as it means that calculating the spectrum of A
– which generally has a cubic cost in terms of the number of vertices – will have a cubic cost in terms of the
diameter of X (which is generally much smaller than |V (X)|).

4.4.3 Imprimitivity

To conclude this section, we will discuss the concept of primitivity in distance-regular graphs. Given a
distance-regular graph X, we say that it is imprimitive if any of its distance graphs Xi is disconnected (with
i > 1), and primitive otherwise. Bipartite graphs with diameter at least 2 are always imprimitive, and the
same holds for antipodal graphs – that is, graphs where Xd is a disjoint union of two or more cliques. The
following result shows that any imprimitive distance-regular graph belongs to one of these families:

Theorem 4.4.5 (Smith’s Theorem). If X is an imprimitive distance-regular graph with degree k > 2, then
it is bipartite or antipodal (or both).

Proof. Let X be as stated, with diameter d. We say that a triple of vertices u, v, w ∈ V is of type (l, i, j) if
D(u, v) = l, D(u,w) = i, D(v, w) = j, where D is the combinatorial distance in X. Note that if j > 0 and
pjii > 0, then any pair of adjacent vertices in Xj has at least one common neighbor in Xi, so any path in Xj

generates a path in Xi. Therefore, if Xj is connected, then Xi must also be connected. If we choose i as the
minimal index such that Xi is disconnected, it follows that if j < i, then pjii = 0, i.e., there are no triples of
type (j, i, i). Since X is connected by assumption, we have that i > 1.

Now, we consider three possible cases:

(i) If i = d, we show that X is antipodal. Note that pjdd = 0 for all j < d, so all triples of the type (j, d, d)
are forbidden. This means that if D(u,w) = D(u, v) = d, then D(w, v) = d, i.e., Xd is a disjoint union
of cliques, so X is antipodal;

(ii) If 2 = i < d, we will show that X is bipartite. Indeed, we first consider a triangle wv0v1, and let
v0v1v2v3 be a path of length 3 between vertices v0, v3 at distance 3. If we look at the triple w, v0, v2,
then, since D(w, v0) = 1 and D(v0, v2) = 2, it follows that D(w, v2) ∈ {1, 2, 3}, but it cannot be 3, since
wv1v2 is a path of length 2 from w to v2, and it cannot be 2, since otherwise the triple would be of
type (1, 2, 2), which is forbidden, so it must be 1. Now, if we look at the triple w, v1, v3, similarly we
have that D(w, v3) ∈ {1, 2, 3}, but it cannot be 3, since wv2v3 is a path of length 2 from w to v3, and it
cannot be 1, since otherwise v0wv3 would be a path of length 2 between v0 and v3, so D(w, v3) = 2
and wv1v3 is a forbidden triple of type (1, 2, 2). This shows that there are no triangles in X. Now, let
C be an odd cycle of length greater than 3, and note that all its vertices are in the same connected
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component ∆ with respect to X2. If u, v are adjacent vertices in C and w is adjacent to u, then w
cannot be adjacent to v, because there are no triangles, which means that w, v are adjacent in X2,
and thus w belongs to ∆. We can repeat this argument for any path connecting a vertex in X to C,
concluding that all the vertices in the path must be in ∆, and since X is connected, this implies that
X2 is connected, which is a contradiction. Therefore, there are no odd cycles, and X is bipartite;

(iii) If 2 < i < d, we will show that this leads to a contradiction. Consider a path of length d between
vertices v0, vd at distance d, and note that since k ≥ 3, we can find a vertex w adjacent to vi that
is distinct from vi−1, vi. Looking at the triple w, v0, vi, we obtain that D(w, v0) ∈ {i− 1, i, i+ 1}. If
D(w, v0) = i, then the triple w, vi, v0 is of a forbidden type (1, i, i). If D(w, v0) = i+ 1, then the triples
w, vi, v1 and w, v1, v0 show that D(w, v1) = i, so the triple w, vi+1, v1 is of a forbidden type (j, i, i) with
j ≤ 2. This implies that any neighbor of vi distinct from vi+1 must be at distance i − 1 from v0, so
ci = k − 1 and bi = 1. Now, since the graph is distance-regular, it follows that vi+1 must also have ci
neighbors at distance i− 1 from v1, and since k− 1 ≥ 2, we can find a vertex z adjacent to vi+1 distinct
from vi, which is at distance i− 1 from v1. The triples z, v0, v1 and z, v0, vi+1 show that D(z, v0) = i,
so z ̸= w, and the triple z, vi, v0 is of a forbidden type (j, i, i), with j ≤ 2.

The previous cases show that i is either d or 2, which in turn implies that X is either bipartite or antipodal,
as we wanted. ■

The cycle with nine vertices C9 is a counterexample to the previous theorem for k = 2, as it is imprimitive
but neither bipartite nor antipodal, and the complete bipartite graphs Kd,d are examples of imprimitive
distance-regular graphs that are both bipartite and antipodal. As a final note, the previous theorem allows us
to construct primitive graphs from imprimitive graphs. If X is an imprimitive bipartite graph with degree at
least 3 and partitions V1, V2, then Vi is a connected component of X2. The graphs induced by the components
Vi in X2 are called halved graphs, and are denoted by X+, X−. If X is antipodal, then we can obtain a graph
X ′ with the vertex set given by the equivalence classes of X0 ∪Xd, where two classes are adjacent if they
contain vertices adjacent in X, and such a graph is called the folded graph of X. It can be shown that if X is
distance-regular, then these graphs will also be distance-regular, and that after at most two steps of halving
and/or folding, a primitive graph is obtained (we refer the reader to [BCN11, Ch.4] for more details).

4.4.4 Automorphisms

If X is a graph with n vertices, we can consider the group G = Aut(X) formed by the elements of Sym(n)
that preserve adjacencies and non-adjacencies in X, i.e., by the permutations g such that uv ∈ E(X) if and
only if g(u)g(v) ∈ E(X). This group is called the automorphism group of X. We will abuse notation and also
identify G with its representation as a subgroup of GL(n,C) formed by permutation matrices (as in Example
2.5.1), and in this case, we can note that a permutation matrix P belongs to G if and only if P TAP = A,
where A is the adjacency matrix of X. The group G acts naturally on the vertices of X, and if this action is
transitive, we say that the graph is vertex-transitive, and G also acts on the set of edges of X (where we
understand that the edge ij is represented by the set {i, j}, so ij = ji), and if this action is transitive, we
say that the graph is edge-transitive. The automorphism group also acts on the set of arcs of X, i.e., the set
of ordered pairs of connected vertices (thus the arc (i, j) is different from the arc (j, i)), and if this action
is transitive, we say that X is arc-transitive. Not every edge-transitive graph is arc-transitive, but every
arc-transitive graph is necessarily both edge-transitive and vertex-transitive (for more information on graph
automorphisms, we recommend [GR13, Ch.2] and [Big93, Chs.15-17]).

In this section, we will be interested in a particular case of graphs with high symmetry: the so-called
distance-transitive graphs. If X is a connected graph with diameter d and automorphism group G, we say
that it is distance-transitive if, for any vertices u, v, w, z ∈ V (X) such that D(u, v) = D(w, z), there exists
P ∈ G such that P (u, v) = (P (u), P (v)) = (w, z), i.e., P maps u to w and v to z. The Johnson and Hamming
graphs are examples of distance-transitive graphs, and it is easy to observe that from the above definition,
every distance-transitive graph is also distance-regular. We will now see how to relate the orbital scheme
with the Bose-Mesner algebra associated with a distance-transitive graph. First, we note that generally if
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P ∈ G, then P TAiP = Ai for any of the distance matrices Ai of a graph X, i.e., each Ai belongs to the
centralizer algebra C(G) of G in Mn(C), and thus

C[A] ⊆ C[I, A,A2, ..., Ad] ⊆ C(G),

for any connected graph of diameter d. We have seen that if X is distance-regular, then the first inclusion
above is an equality, and now we will see that in the case of distance-transitivity, the chain of inclusions
above is a chain of equalities. This will follow as a consequence of the following result:

Proposition 4.4.6. If G is a group of permutation matrices, then the coherent algebra A generated by the
orbital configuration Inv(G) is C(G).

Proof. If Ai is one of the Schur basis matrices of A and if P ∈ G, then P TAiP = Ai, since the matrices
Ai represent the orbitals of G. On the other hand, if A ∈ C(G), it means that P TAP = A for any matrix
P ∈ G, and this in turn implies that the 01 components of A will precisely be the orbitals of G, and therefore
P ∈ A. This shows us that A = C(G). ■

If G is the automorphism group of a distance-transitive graph, then by definition, we will have exactly
d+ 1 orbitals, and this, together with the previous result, tells us that the dimension of C(G) is precisely
d+1, so C[A] = C(G). Finally, it is worth noting that if A is the coherent algebra generated by the conjugacy
scheme of G, then A = Z(CG), where CG is the algebra of the automorphism group viewed according to the
representation of CG as permutation matrices (to see this, just note that the dimension of A is equal to the
dimension of Z(CG) by Theorem 2.5.6).

4.5 Applications in Coding Theory

In this section, we will discuss some applications of association schemes to error-correcting code theory. This
theory was developed independently of graph theory throughout the 20th century and has many practical
applications of great importance. Also, throughout the 20th century, it became clear that this theory has
many interesting intersections with other areas of mathematics, particularly with the theory of finite groups.
The basic problem in this area is determining an optimal way to transmit a message through a medium that
might corrupt it, either due to noise or external interference. This section contains only a brief introduction
to the subject, and for further information, we refer the reader to [Coh74, Ch.11].

First, we begin with an alphabet F with q symbols, and then consider the set X = Fn of words of length
n over F , i.e., we start in the same way as the Hamming scheme seen in the last chapter. A code is simply
a subset C of words in X. As a motivating example, suppose that Alice and Bob want to send a message
through a channel, and for this, both agree beforehand on a code C. Alice then encodes her message and
sends it to Bob. There are two basic tasks we can do in this context:

• Error detection: If Bob receives a message x ∈ X, he would like to determine whether any errors
occurred in the transmission, and potentially the number of errors that occurred;

• Error correction: If Bob receives a message, he would like to detect and correct as many errors as
possible.

To attempt to solve these tasks, we must introduce the concept of the minimum distance of the code C,
which is defined as

δ = δ(C) := min{∂(x, y)|x, y ∈ C, x ̸= y},

where ∂ is the Hamming distance. We will say that C is an (n,M, δ)-code if C ⊂ Fn, it has M elements, and
the minimum distance is δ. The strategy we will adopt for detecting and correcting errors is as follows: if Bob
receives a message x, we try to find a unique element y ∈ C such that ∂(x, y) is minimal. If this is possible,
we can simply correct x to y, or return the distance from x to y as the number of errors that occurred. A
good code is one that has a sufficiently large number of elements (to make encoding more efficient), but also
has a large minimum distance (to make error detection and correction more efficient), and finding such codes
is generally an extremely difficult task. With this, we can prove our first result:
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Proposition 4.5.1. If C is an (n,M, δ)-code, then we can detect at most δ − 1 errors and correct at most
⌊(δ − 1)/2⌋ errors.

Proof. If x ∈ C is a transmitted message and s errors occur resulting in the received message x′, then
δ(x, x′) = s. If 0 < s < δ, we will determine that x is the unique closest message to x′ and detect the s
errors, otherwise, we will not be able to detect the errors correctly. Now if r ≤ (δ − 1)/2 errors occur, we
claim that x is the only element of C closest to x′. In fact, if there were another element y ∈ C such that
∂(x, x′) = ∂(y, x′) = r, then

2r = ∂(x, x′) + ∂(y, x′) ≥ ∂(x, y) ≥ δ ≥ 2r + 1,

which is a contradiction, and thus we can correct the r errors. ■

Before continuing, we will discuss a simple example:

Example 4.5.2 (Parity Check). Consider the binary alphabet F = {0, 1}, and suppose we want to send
words of length n. We can then construct the following code: for each word x ∈ Fn, we append a 0 at the
end if the number of 1’s in x is even, and a 1 otherwise. In this way, we obtain a code C in Fn+1 of size 2n,
and with minimum distance 2. By the previous result, this code can detect a single error but cannot correct
any errors.

We will denote by Aq(n, δ) the largest size M of an (n,M, δ)-code, and if C is a code such that
M = Aq(n, δ), we say that it is optimal, and if no larger code exists with the same minimum distance that
contains C, we say it is maximal. We will define the closed ball of radius r centered at x ∈ X as

Br(x) := {y ∈ X|∂(x, y) ≤ r},

and we say that a set of balls is a covering of Fn if every point belongs to at least one ball, and it is a packing
if every point belongs to at most one ball. We will now use these concepts to obtain bounds for Aq(n, δ).
First, we will denote by

Vq(n, r) := |Br(x)| =
r∑
i=0

(
n

i

)
(q − 1)i,

and thus qr = Vq(r, r) ≤ Vq(n, r) ≤ Vq(n, n) = qn. With this, we obtain the following result:

Theorem 4.5.3. If C is a maximal (n,M, δ)-code, then

qn

Vq(n, δ − 1) ≤ |C| ≤ qn

Vq(n, ⌊(δ − 1)/2⌋) .

Proof. To prove the result, we will construct a covering and a packing from a maximal code C as in the
statement. First, we can consider the set {Bδ−1(x)|x ∈ C}, and note that this will be a covering, because
from the maximality of C it follows that for every y ∈ Fn there exists some x ∈ C such that ∂(x, y) ≤ δ − 1
(otherwise, we could enlarge the code). Therefore, we have that |C|Vq(n, δ− 1) ≥ qn. For the upper bound, it
is enough to consider the set {Br(x)|x ∈ C} with r = ⌊(δ − 1)/2⌋, and note that if there exists some y ∈ Fn

such that y ∈ Br(x1) ∩Br(x2), with x1, x2 ∈ C, then

2r ≥ ∂(y, x1) + ∂(y, x2) ≥ ∂(x1, x2) ≥ δ ≥ 2r + 1,

which is a contradiction, so the set will be a packing, and from this it follows that |C|Vq(n, ⌊(δ−1)/2⌋) ≤ qn. ■

Since every optimal code is maximal, the previous result gives us bounds for Aq(n, δ). The previous
results are classical in coding theory, and up to this point, they do not use the theory we developed in the last
chapter. We will now see how to obtain a more general bound for Aq(n, δ) using association schemes, but for
this, we will prove a general result about symmetric schemes, originally demonstrated by Delsarte [Del73].
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Theorem 4.5.4. Let (X, {Ri}di=0) be a symmetric association scheme with second eigenmatrix Q, and let
C ⊆ X be any subset, and consider the distribution vector a ∈ Rd+1 of C defined by

ai = |(C × C) ∩Ri|
|C|

,

i.e., the vector that counts the average degree in Ri of the subgraph induced by C.

Proof. First, note that if 1C is the indicator vector of the set C, then

ai = 1
T
CAi1C
|C|

,

and if E0, . . . , Ed are the primitive idempotents of the scheme, then Ei = (1/|X|)∑d
l=0QliAl, so

0 ≤ ||1TCEi||2

= (1TCEi)(1TCEi)T

= 1
T
CEi1C

= 1
|X|

d∑
l=0

Qli1
T
CAl1C

= |C|
|X|

(aTQ)i,

and therefore aTQ ≥ 0. ■

Now consider the Hamming scheme H(n, q), which is symmetric, and let C be an (n,M, δ)-code. If we
consider the distribution vector a of C, we have that a ≥ 0, a0 = 1, and ai = 0 if 1 ≤ i < δ, i.e., if we consider
the linear program

max{1T y|y ∈ Rn+1
+ , y0 = 1, yi = 0 if 1 ≤ i < δ, yTQ ≥ 0},

we have that a is a feasible solution with objective value
n∑
i=0

ai = 1
T
C(∑n

i=0Ai)1C
|C|

= |C|,

and with this we obtain the following result:

Theorem 4.5.5 (Delsarte Bound). If C is an (n,M, δ)-code, then

|C| ≤ max{1T y|y ∈ Rn+1
+ , y0 = 1, yi = 0 if 1 ≤ i < δ, yTQ ≥ 0},

where Q is the second eigenmatrix of the Hamming scheme H(n, q).
■

The previous result can be used to obtain bounds for the chromatic number and the size of a maximum
coclique in strongly regular graphs (that is, distance-regular graphs of diameter 2, we refer to [BVM22] for
more information), and it is considered one of the most important results in association scheme theory.

72



References
[Axl14] S. Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer Interna-

tional Publishing, 2014.

[Bai04] R. Bailey. Association Schemes: Designed Experiments, Algebra, and Combinatorics. Cambridge
studies in advanced mathematics. Cambridge University Press, 2004.

[BCN11] A.E. Brouwer, A.M. Cohen, and A. Neumaier. Distance-Regular Graphs. Ergebnisse der
Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.
Springer Berlin Heidelberg, 2011.

[BGSV12] C. Bachoc, D. C. Gijswijt, A. Schrijver, and F. Vallentin. Invariant semidefinite programs. In
M. F. Anjos and J. B. Lasserre, editors, Handbook on Semidefinite, Conic and Polynomial
Optimization, pages 219–269. Springer US, New York, NY, 2012.

[Big93] N. Biggs. Algebraic Graph Theory. Cambridge Mathematical Library. Cambridge University
Press, 1993.

[BVM22] A.E. Brouwer and H. Van Maldeghem. Strongly Regular Graphs. Encyclopedia of Mathematics
and its Applications. Cambridge University Press, 2022.

[Cam99] P.J. Cameron. Permutation Groups. London Mathematical Society Student Texts. Cambridge
University Press, 1999.

[Coh74] P.M. Cohn. Algebra. Number v. 2 in Algebra. Wiley, 1974.

[Coh12] P.M. Cohn. Basic Algebra: Groups, Rings and Fields. Springer London, 2012.

[CP23] G. Chen and I. Ponomarenko. Lectures on coherent configurations, October 2023.

[CR66] C.W. Curtis and I. Reiner. Representation Theory of Finite Groups and Associative Algebras.
AMS Chelsea Publishing Series. Interscience Publishers, 1966.

[dCSCGR19] M. K. de Carli Silva, G. Coutinho, C. Godsil, and D. E. Roberson. Algebras, graphs and
thetas. Electronic Notes in Theoretical Computer Science, 346:275–283, August 2019.

[Del73] P. Delsarte. An Algebraic Approach to the Association Schemes of Coding Theory. Philips
journal of research / Supplement. N.V. Philips’ Gloeilampenfabrieken, 1973.

[Die05] R. Diestel. Graph Theory. Electronic library of mathematics. Springer, 2005.

[Far12] D.R. Farenick. Algebras of Linear Transformations. Universitext. Springer New York, 2012.

[FD12] B. Farb and R.K. Dennis. Noncommutative Algebra. Graduate Texts in Mathematics. Springer
New York, 2012.

[FIKW13] I.A. Faradzev, A.A. Ivanov, M. Klin, and A.J. Woldar. Investigations in Algebraic Theory of
Combinatorial Objects. Mathematics and its Applications. Springer Netherlands, 2013.

[Gal21] J.A. Gallian. Contemporary Abstract Algebra. Textbooks in Mathematics. CRC Press, 2021.

[GM15] C. Godsil and K. Meagher. Erdõs–Ko–Rado Theorems: Algebraic Approaches. Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 2015.

[God93] C. Godsil. Algebraic Combinatorics. Chapman Hall/CRC Mathematics Series. Taylor &
Francis, 1993.

[God10] C. Godsil. Association schemes, June 2010.

73



[GR13] C. Godsil and G.F. Royle. Algebraic Graph Theory. Graduate Texts in Mathematics. Springer
New York, 2013.

[Kar72] R. M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller, James W.
Thatcher, and Jean D. Bohlinger, editors, Complexity of Computer Computations: Proceedings
of a symposium on the Complexity of Computer Computations, held March 20–22, 1972, at the
IBM Thomas J. Watson Research Center, Yorktown Heights, New York, and sponsored by the
Office of Naval Research, Mathematics Program, IBM World Trade Corporation, and the IBM
Research Mathematical Sciences Department, pages 85–103. Springer US, Boston, MA, 1972.

[Lam13] T.Y. Lam. A First Course in Noncommutative Rings. Graduate Texts in Mathematics. Springer
New York, 2013.

[Lan05] S. Lang. Algebra. Graduate Texts in Mathematics. Springer New York, 2005.

[LV16] M. Laurent and F. Vallentin. Semidefinite optimization, April 2016.

[Men23] L. Mendonça. Álgebra não-comutativa, Novembro 2023.

[Pas04] D.S. Passman. A Course in Ring Theory. AMS Chelsea Publishing Series. AMS Chelsea Pub.,
2004.

[PdCSST23] N. B. Proença, M. K. de Carli Silva, C. M. Sato, and L. Tunçel. A primal-dual extension of
the goemans–williamson algorithm for the weighted fractional cut-covering problem, 2023.

[Ter23] P. Terwilliger. Algebraic combinatorics: Association schemes, 2023.

[VDKT16] E. R. Van Dam, J. H. Koolen, and H. Tanaka. Distance-regular graphs. The Electronic Journal
of Combinatorics, 1000, April 2016.

[VS21] A.C. Vieira and R.B. Santos. PI-álgebras: uma introdução à PI-teoria. 33o Colóquio Brasileiro
de Matemática. IMPA, 2021.

74


	Basic Structures
	Groups
	Basic Concepts
	Actions
	Products and Sums

	Rings and Fields
	Basic Concepts
	Isomorphism and Correspondence Theorems
	Products and Sums

	Modules and Vector Spaces
	Basic Concepts
	Isomorphisms
	Products and Sums
	Simple Modules
	Vector Spaces and Zorn's Lemma

	Algebras

	Semisimplicity
	Semisimple Modules
	Semisimple Rings
	Ideals and Submodules
	Wedderburn's Theorem
	Simple Rings and the Artin-Wedderburn Theorem

	The Jacobson Radical
	Semisimple Algebras
	Representations of groups and algebras
	Initial Definitions
	Irreducibility and Maschke's Theorem
	Group Algebra and Semisimplicity


	Matrix Algebras
	-Algebras
	Triangularization and Diagonalization of Commutative Algebras
	Semisimplicity of -Algebras

	Association Schemes
	Configurations and Schemes
	Basic Concepts
	Group Configurations
	The Johnson and Hamming Schemes

	Coherent Algebras
	Commutative Schemes
	Distance-Regular Graphs
	Definition and Basic Properties
	Spectrum
	Imprimitivity
	Automorphisms

	Applications in Coding Theory

	References

