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The ability to reliably generate random numbers is essential to most professionals in
STEM, specially for those working with statistical and computational experiments. Most
RNG systems today, however, generate pseudorandom numbers that are not truly ran-
dom in nature, and although this approximation may suffice for most applications, there
are a myriad of relevant problems that require a way of generating true random num-
bers, such as high-security networks and proof-of-stake cryptocurrencies. In this work,
we present a comprehensive review of one of the most important methods for generating
true random numbers: Quantum Random Number Generation. First, we introduce some
preliminary concepts that are paramount to fully understanding the topic at hand, and
then we perform an in-depth look the concept of Quantum Randomness and its uses to
random number generation. Second, we discuss a novel method for generating crypto-
graphically certified random bits based on random circuit sampling protocols, that was
recently proposed by Scott Aaronson and Shih-Han Hung.
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1 Introduction

Many different areas in Computer Science, Physics, Chemistry and Engineering have a deep
reliance on random numbers to perform a myriad of different tasks. In computer science
alone problems from cryptography to artificial intelligence depend on the ability to efficiently
and reliably generate random numbers. However, as there is no way to achieve fast and
reliable true randomness in a deterministic system, where correlations appear on large scale
generation, one must resort to physical sources of entropy, which in turn are often troubled
by low throughput of entropy coupled with uncertainty regarding the hardware’s reliability.

The concept of "certifiable" randomness adds another crucial layer to this discussion.
Certifiable random numbers are those whose randomness can be mathematically verified. As
reported previously in the media, the NSA Bullrun operation inserted backdoors into some
mainstream algorithms, rendering their unpredictable falsified. With the rapid advancement
of technology and the ever-increasing need for secure data transmission, it’s increasingly
necessary to be able to guarantee the integrity of random numbers.

Quantum Random Number Generation then appears as an ideal candidate for solving the
problem of generating random numbers, as quantum mechanics is inherently stochastic — you
don’t need to source entropy across time, true randomness is a fundamental reality –, thus
serving as an ideal source for random number generation. Moreover, quantum processes, cou-
pled with the principles of quantum cryptography, can allow us to generate cryptographically
certified random bits, which in turn may make our systems more robust and secure.

The main result discussed in this paper concerns precisely that: how to generate random
numbers that are certifiably random using a quantum computer. A recent result by Scott
Aaronson and Shih-Han Hung proposes a quantum RNG system that utilizes the recent
Quantum Supremacy experiments – conducted by Google in 2019 – to design a system that can
be mathematically proven to output a minimum amount of entropy, given certain reasonable
computational assumptions.

The main objective of this article then is as follows:

• We first introduce the concept of Quantum Random Number Generation, and formalize
the many different ways to harness the inherent randomness of quantum systems.

• We then introduce and formally prove the main results from Aaronson and Hung’s
[AH23] for generating cryptographically certified random bits.

2 Preliminaries

In this section, we formalize the main results that we consider to be essential prerequisites for
understanding further sections of this work. However, the descriptions in this section will be
brief, and thus we are assuming that the reader is familiar with most of the discussed topics.

The main references for the next subsections are as follows: subsection 2.1 uses [Khr15,
Kol63, Kol98, Cha69], subsection 2.2 uses [Mac03], subsection 2.3 uses [L’E17, Knu97], subsec-
tion 2.4 uses [NC00, AH23, Wik23c], and subsection 2.5 uses [NC00, Wik23a, Wik23b, Bab85].

2.1 Randomness

First, we discuss the meaning of being random and how this concept is related to probability
theory.
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Consider a hypothetical set, denoted as Ω, consisting of all sequences of length N with
entries in {0,1}n. A sample of such a sequence would be x = (x1, ..., xN), where each xj could
either be 0 or 1. We can assign a uniform probability distribution to Ω, meaning that each
sequence has an equal probability of occurring, calculated as p(x) = 1

2N
for each x ∈ Ω.

Now, imagine that, after an experiment is conducted, the following relatively long sample
is obtained:

1001001000011111101101010100010001000010110100011000010001101001

1000100110001100110001010001011100000001101110000011100110100010

1010010000001001001110000010001000101001100111110011000111010000

0000100000101110111110101001100011101100010011100110110010001001

This sequence seems to fit the intuitive understanding of randomness, as it does not seem
to hold an evident pattern. On the other hand, if we consider a different sequence of the
same length, say one that alternates between 0 and 1, (01)n, such that n is the number of
repetitions, we notice that, even though this sequence is equally as likely to occur as the
previous string, we wouldn’t typically classify it as ’random’ due to its obvious pattern. If
such an alternating sequence were to appear in an experiment intended to produce random
sequences, it would be surprising and inconsistent with intuitive expectations of randomness,
even though it is still possible. Yet, traditional probability calculations don’t capture this
notion of uncertain unique outcomes, illustrating the limits of probability theory when it
comes to capturing our intuitive understanding of randomness.

Our “random” long sequence was actually taken from the first 258 binary digits of the
mathematical constant π with some bits flipped, i.e., it was generated from a completely de-
terministic process, and so, despite appearances, it was not random at all. This underlines the
need for a formal theory that reconciles our heuristic notions of randomness with probabilistic
principles.

The notion the Kolmogorov complexity is a relevant concept that arises from analyzing
the randomness from an algorithmic standpoint. It focuses on the concept of algorithmic
randomness, which is a measure that represents the length of the shortest computer program
that can reproduce a given output, based on a Turing Machine tape. This approach to
randomness is different from uncertainty. We now present some relevant definitions regarding
Kolmogorov complexity.
Definition 1 Let A be an algorithm. The algorithmic complexity of a sequence x in relation
to A is denoted as KA(x) and it is defined as the minimum length of the programs (π) that
can generate the sequence x using the algorithm A.
Definition 2 Let A be an algorithm with prefix-free domain of definition D (i.e., no word in
D is the prefix of any other word in D). The prefix-free algorithmic complexity of a sequence
x, denoted as K̃A(x), is the length of the shortest word π in D such that A(π) equals x. If
such π doesn’t exist, then K̃A(x) is positive infinity.
Proposition 1 There exists an optimal prefix-free algorithm A0 such that, for any other
prefix-free algorithm A, there is a constant C > 0, where K̃A0(x) ≤ K̃A(x) +C.

The prefix-free complexity K̃(x) of the word x is defined as equal to the complexity KA0(x)
with respect to one fixed (for all considerations) optimal prefix-free algorithm A0.
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Definition 3 A sequence x is deemed Kolmogorov-Chaitin random if it is incompressible,
i.e., no initial segment of x can be compressed more than for a fixed finite number of bits. In
other words, there exists a positive number b such that K̃(x1∶n) ≥ n − b for all n.

Thus, this approach to randomness establishes that a sequence is random if there is no shorter
computer program or algorithm that can produce it, rendering it incompressible. This aligns
with our intuitive understanding of randomness as a lack of pattern or order that can be
exploited to compress the data, as any causal relationship would render the sequence deter-
ministic.

2.2 Information Theory

In this subsection, we provide a brief overview of the most relevant results from Information
Theory that will be present in later sections. Our main topic of focus will be the notion of
entropy, and how to quantify the amount of randomness is a given system.
Definition 4 For a given random variable X with probability distribution p, for a given event
x ∈X define the information content of x as

h(x) = −log(p(x)) (1)

The information content, as the name suggests, is a reasonable way of estimating the amount
of information contained in a given event. A important point is the sign, which is used to
make the function image from 0 to 1 positive, as the domain is a probability.

Following from this, we can naturally define the notion of Shannon entropy.
Definition 5 For a given random variable X, with probability distribution p, define the Shan-
non entropy of X as

H(X) = E
x∈X
[h(x)] = ∑

x∈X
−p(x)log(p(x)) (2)

The Shannon entropy is a natural way of quantifying the amount of randomness – or uncer-
tainty – in a given random variable. This definition of entropy is just the expected value of
the information contents of all events, and thus it can be seen as a way of accounting for
the average information present in the set of all events. There are, however, other ways of
defining entropy. We can define the min-entropy of a classical random variable as follows
Definition 6 Let X be a classical random variable. The minimum-entropy (min-entropy) of
X is defined as

Hmin(X) ∶= h(max
x∈X

p(x)) (3)

This means that the min-entropy of X is defined as the information content of the most likely
event in X, which in turn guarantees that such quantity is always upper-bounded by the
Shannon Entropy of X. The min-entropy is often referred to as a conservative measure in
the sense that it is trying to describe the randomness of a system solely based on the most
likely outcome, and this is of particular interest for measuring the unpredictability of highly
sensitive systems w.r.t. privacy, e.g., passwords.

The above definitions, although brief, will prove to be essential for the next sections, and
for the main results discussed in this article.
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2.3 Classical RNG and CSPRNG

Based on the definitions of randomness, we know that deterministic procedures cannot gener-
ate random values, but that doesn’t exclude the possibility of creating pseudorandom number
generators that are good enough for a given application. As a matter of fact, most of the cur-
rent computer systems that rely on randomness actually depend on pseudorandom numbers.
These classical RNG systems are, by definition, deterministic, since they generate the same
output given the same initial seed. They are also periodic, since sequences of numbers will
eventually repeat, and the length of distinct outputs before repetition is often referred to as
period. Moreover, these systems are designed to be extremely efficient.

We now provide an example of one such classical RNG algorithm.
Definition 7 The Linear Congruential Generator generates numbers via the following recur-
rence relation:

Xn+1 = (aXn + c) mod m (4)

where Xn denotes the n-th element of the sequence, and a, c,m are constants.
Since this algorithm generates numbers using the modulus operation, the sequence of

numbers will eventually repeat after a large enough number of iterations. If an adversary
knows the algorithm architecture and has some samples or can discover/guess the seed, they
can predict all future numbers in the sequence, breaking the security of any protocol that
relies on such algorithm.

A clever approach for designing better RNGs is to counteract its two most critical flaws:
periodicity and determinism. By seeding the algorithm with entropy collected from some
physical source – say a radioactive decay, for instance – the seed itself will be generated from
a certifiably random process, and thus any adversary will have little hope of guessing the
original seed.

Most programmers in day to day tasks use algorithms like Math.random() or their pre-
ferred language equivalent for random number generation purposes, being careful in hiding/-
choosing a good seed, such that attackers won’t predict the next number, and periodically
reseeding. However, it can be shown that one can trivially discover the algorithm’s pattern
and exploit it for malicious ends if no other ciphering and automatic reseeding is employed.

An example of this is the javascript random method, implemented by Google in the V8
Engine, that uses the Xorshift algorithm [Mar03], which, given two states, performs shift
operations with special constants, in order to achieve pseudo randomness. However, since
this algorithm consists of a known set of operations and unknown values, one can use a
satisfability modulo theory solver – such as the Z3 SMT solver [Mic23] – to model possible
seed values as theorems, and then check if their are satisfiable in order to compute possible
solutions. Hence, one can easily break the security of such RNG system.

A way to address this vulnerability is to employ a Cryptographically Secure Pseudo-
Random Number Generator (CSPRNG), which must satisfy two criteria:

• It must pass the "next-bit test", which means that if you know the first ’k’ bits in a
sequence, there shouldn’t be any practical method (algorithm) that can guess the next
bit (the (k+1)th bit) with a success rate that is meaningfully higher than pure chance
(50%). This concept was demonstrated by Andrew Yao in 1982, who showed that if a
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generator passes this test, it would also pass any other statistical tests for randomness
that can be executed in a practical amount of time.

• It must be resistant to "state compromise extensions". This means that even if a part
or all of its internal state (the information it uses to generate the next random number)
is exposed or correctly guessed, it should still be impossible to rebuild the previously
generated random numbers. Furthermore, if the generator accepts an entropy input (a
source of randomness) during operation, knowing the state of this input shouldn’t allow
predicting future states of the CSPRNG.

For instance, if a CSPRNG creates output by computing the bits of the number π in a
sequential order, starting from an unknown point in the binary representation of π, it might
pass the next-bit test. That’s because π seems to be a random sequence. However, this
method also isn’t cryptographically secure: if an attacker identifies the current state of the
generator (the current bit of π being used), they could calculate all the preceding bits.

A good algorithm, employed by some Linux distributions, is the Fortuna CSRNG [Wik],
employing a strategy of entropy accumulation and clever generation. However, if you know
parts of the algorithm state and architecture, it may be possible to reverse the seed, but
employing reseeding avoids the issue, as the attacker would need a SMT solver capable and
fast enough to deal with the changes.

2.4 Quantum Information

In this subsection, our main objective is to formalize the many notions of entropy defined for
quantum systems, as well as stating a proving some of the more useful theorems related to
these quantities.

First, we define a quantum analogue for the Shannon entropy.
Definition 8 Let ρA denote a density matrix on a quantum system A. The Von Neumann
entropy of ρA is given by:

Hρ(A) ∶= −tr(ρ log ρ) = − ∑
λ∈spec(ρ)

λ log(λ) (5)

where log ρ denotes the matrix logarithm of ρ, and spec(ρ) denotes the spectrum of ρ. For a
bipartite state ρAB, its Von Neumann entropy is given by:

Hρ(A∣B) =Hρ(AB) −Hρ(B) (6)

Such definition of entropy merely translates the notion of Shannon entropy to a quantum
system, i.e., measuring the average unpredictability of the outcomes of the system. We now
define the notion of relative entropy.
Definition 9 Let ρA, σA denote two density matrices on a quantum system A. The relative
entropy of ρA to σA is given by:

D(ρA∣∣σA) ∶= tr(ρA log ρA) − tr(ρA logσA) = tr(ρA(log ρA − logσA)) (7)

The relative entropy can be seen as a quantum generalization of the Kullback-Leibler (KL)
divergence of the states, and indeed, if ρAσA = σAρA, i.e., they commute, then they will
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be simultaneously diagonalizable by a set of orthonormal eigenvectos, with possibly distinct
eigenvalues. We then get that

log ρA = V diag({logλ∣λ ∈ spec(ρ)})V ∗, logσA = V diag({log θ∣θ ∈ spec(σ)})V ∗

⇒ log ρA − logσA = V (diag({log(λ/θ)})V ∗

⇒tr(ρA(log ρA − logσA)) =
n

∑
i=1

λi log(λi/θi)
(8)

where n is the dimension of the Hilbert-Space, log is taken base 2, and spec denotes the
spectrum of an operator. This means that, if the density matrices commute, their relative
entropy is just the standard KL divergence w.r.t. their eigenvalues. Moreover, we also define
D(ρA∣∣σA) =∞ when supp(ρA) ∩ ker(σA) ≠ {0}, where supp(ρA) = {v ∈ Cn∣ρAv ≠ 0}.

From the previous definition, we can naturally define the notion of maximum relative
entropy.
Definition 10 Let ρA, σA denote two density matrices on a quantum system A. The maxi-
mum relative entropy of ρA to σA is given by:

Dmax(ρA∣∣σA) ∶= inf{λ ∈ R ∶ ρA ≤ 2λσA} (9)

Finally, we can now define the notion of conditional min-entropy.
Definition 11 Let ρAB denote a density matrix on a bipartite quantum system AB. The
conditional min-entropy of A conditioned by B is defined as:

Hmin(A∣B)ρ ∶= sup
σB

{−Dmax(ρAB ∣∣IA ⊗ σB)} (10)

Intuitively, the conditional min-entropy describes the amount of extractable randomness sys-
tem A has given the information available on B. In the case that A,B are classical systems,
they are considered to be random variables, and both ρAB and σB are considered to be
diagonal matrices on the same basis defining a probability distribution over the systems.

One can also deduce an interesting and useful link between the classical notion of min-
entropy and the quantum one. Let Q be a quantum system with state ρx, where x depends
on a classical random variable X, and let p(x) denote the probability of x. We can consider
a state from the system XQ as follows

ρXQ =∑
x

p(x)∣x⟩⟨x∣⊗ ρx (11)

where {∣x⟩∣} forms an orthonormal basis. Let pg(X ∣Q) be the probability that an agent
guesses X when using an optimal measurement strategy. It can be shown that, if ρXB is a
pure state, then

Hmin(X ∣B) =Hmin(X) (12)

which, in other words, implies that

2−Hmin(X ∣B) =max
x∈X
{p(x)} (13)

As we will see in further sections, this previous equation will be extremely useful for proving
certified randomness in the protocol described in [AH23].
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As a final topic, we briefly discuss the concept of what is called the Haar measure on
the group U(N), for a given natural N . It can be shown that such group admits a unique
probability measure that is translation-invariant, i.e., the Haar measure is invariant w.r.t. the
group action of U(N) – that being matrix multiplication –. Moreover, this is a manifestation of
a more general phenomenon: any locally compact group has a Haar measure that is invariant
under the group action, and since U(N) is a topological group that is locally compact and
separable, it satisfies such condition.

From the above definition, however, it is not obvious to see how would one constructively
obtain a Haar random unitary matrix. One extremely interesting way is as follows:

1. First, start with an N × N matrix A with i.i.d. standard complex Gaussian random
variables, i.e., fill each entry of the matrix with a value sampled independently from a
single complex Gaussian distribution.

2. Compute the QR decomposition of A, where A = QR, Q being an unitary matrix, and
R being an upper-triangular matrix. This can be done efficiently by using the Gram-
Schmidt process on the columns of A.

3. The matrix Q will then satisfy Q ∼ Haar(N).

The above procedure is relatively simple, and can be efficiently implemented on a classical
computer. We now state a Lemma that will be extremely important for deriving future results.
Lemma 1 Let C ∈ U(N) be an unitary matrix representing a quantum circuit, and let pC
denote the probability distribution over the N -dimensional Hilbert-space, defined by pC(s) =
∣⟨s∣C ∣0⟩⊗n∣2. If C ∼ Haar(N), then

E
C

E
s∼pC

[pC(s)] =
2

N + 1
(14)

∎
A full proof of the previous Lemma can be found in Section 3.4.2 from [AH23], but we’ve

decided to omit it since it relies on a number of non-trivial results regarding the Dirichlet
Distribution that we believe don’t fit the scope of this article.

2.5 Quantum Complexity Theory

First, we begin by describing one of the most famous interactive proof systems, know as the
Arthur-Merlin protocol. In such protocol, Arthur is the verifier and Merlin is the prover, i.e.,
Arthur has access to polynomial-time operations and wishes to determine if a given string
belongs to a language by exchanging messages with Merlin, which in turn has unlimited power,
however cannot be fully trusted. Moreover, Arthur is assumed to be running a probabilistic
algorithm, i.e., at every step of the message-exchange with Merlin, his decisions are based on
a given probability distribution. This means that Arthur can be thought of as possessing a
RNG device.

We now define two natural complexity classes that arise from this protocol.
Definition 12 Define MA (Merlin-Arthur) as the set of languages L for which there exists
a polynomial-time deterministic algorithm VL, and a polynomial p such that for every string
x ∈ {0,1}n:
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• x ∈ L⇒ ∃c ∈ {0,1}p(n) ∶ P[VL(x, c)accepts)] ≥ 2/3

• x ∉ L⇒ ∀c ∈ {0,1}p(n) ∶ P[VL(x, c)accepts)] ≤ 1/3

Intuitively, the MA class contains all languages such that if a string is in the language, then
there exists a polynomial-sized proof that Merlin can send Arthur to convince him to accept
such string with high probability, otherwise there is no such proof that can convince Arthur
to accept the string with high probability. Therefore, if a problem is in MA, then there is no
good way of tricking Arthur into making a mistake, but there is always a way of convincing
him to accept a right answer. We now define a similar complexity class that arises from the
possibility of two messages being exchanged.
Definition 13 Define AM (Arthur-Merlin) as the set of languages L for which there exists
a polynomial-time deterministic algorithm VL and polynomials p, q such that for every string
x ∈ {0,1}n:

• x ∈ L⇒ Ps∈{0,1}q(n)[∃c ∈ {0,1}p(n) ∶ VL(x, c, s)accepts] ≥ 2/3

• x ∉ L⇒ Ps∈{0,1}q(n)[∀c ∈ {0,1}p(n) ∶ VL(x, c, s)accepts] ≤ 1/3

In the case of AM, we are considering a two message Arthur-Merlin protocol: Arthur inputs x
to his RNG and obtains a string y with polynomial-size w.r.t. x, and then sends y to Merlin,
which in turn produces a proof c and then sends it back to Arthur, and finally Arthur decides
whether or not to accept x via the polynomial-time deterministic algorithm VL. Thus, if a
problem is in AM, then there is a high-probability that, given an output of Arthur’s RNG,
there is a proof that Merlin can produce that convinces Arthur of accepting x, and there
is a low-probability that Merlin can produce any proof that convinces Arthur of making a
mistake.

We now define the quantum analogues of the classes MA and AM.
Definition 14 Define QMA (Quantum Merlin-Arthur) as the set of all languages L for which
there exists a quantum polynomial-time algorithm VL and a polynomial p such that for every
string x ∈ {0,1}n:

• x ∈ L⇒ ∃ρ quantum state on p(n) qubits such that P[VL(x, ρ)accepts] ≥ 2/3

• x ∈ L⇒ ∀ρ quantum state on p(n) qubits such that P[VL(x, ρ)accepts] ≤ 1/3

In the case of QMA, Merlin can send a quantum state ρ to Arthur instead of a classical string
of bits.
Definition 15 Define QCAM (Quantum-Classical Arthur-Merlin) as the set of languages L

for which there exists a quantum polynomial-time algorithm VL and polynomials p, q such that
for every string x ∈ {0,1}n:

• x ∈ L⇒ Ps∈{0,1}q(n)[∃c ∈ {0,1}p(n) ∶ VL(x, c, s)accepts] ≥ 2/3

• x ∉ L⇒ Ps∈{0,1}q(n)[∀c ∈ {0,1}p(n) ∶ VL(x, c, s)accepts] ≤ 1/3

Note that the only difference between QCAM and AM is the nature of the algorithm VL, i.e.,
it is considered to be a quantum algorithm, whereas the difference between QMA and AM is
both due to the nature of VL and due to the fact that Merlin can now send a quantum state ρ
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to Arthur instead of a classical string. We also denote QMA(T ) as the class QMA with query
complexity T , i.e., Arthur’s algorithm VL is O(T ) (the same notation is used for the other
complexity classes). Finally, we define QCAMTIME(T ) as the generalization of QCAM where
Arthur’s algorithm VL is also O(T ) but the communication is still required to be polynomial,
and QCAMTIME(T )/q(A) is the same but Arthur receives A bits of quantum advice that only
depend on the size of the input string.

3 Quantum Random Number Generators

In this section, we formalize the concept of Quantum Random Number Generators, and
then provide an interesting case study regarding quantum devices. The main references for
subsection 3.1 were [MYC+16, JJNJ21], and for 3.2 were [? ].

3.1 QRNG

A Quantum Random Number Generator (QRNG) is any RNG system using quantum systems
to assist in the random number generation process. The fundamental principle behind hard-
ware QRNGs is the assumption that there is no deterministic way of determining to which
state a given quantum state will collapse. This implies that the measurement of a superpo-
sition state, such as a superposition of qubits, results in the production of a fundamentally
random output. Two key stages need to be distinguished in this process:

1. Setup: The preparation of the initial state, which requires trust from the user that the
system is indeed in the superposition state

2. Generation: The process of measuring a series of states, generating the desired random
numbers.

In order to build a secure QRNG, one must guarantee the quantum state is indeed the
expected initial state, and also guarantee that the prepared system was not affected by ex-
ternal agents, which can collapse the initial state and potentially compromise the security
of the whole system. Concerning these questions, QRNGs can be broadly divided into three
categories based on the hardware implementation, offering a trade off between speed and
reliability.

1. Practical Quantum Random Number Generators: These are fully trusted, cal-
ibrated devices where randomness hinges on the accurate modeling and execution of
the physical quantum process. While these devices typically generate numbers at a
moderate speed and are relatively inexpensive, they often mix quantum randomness
with classical noise, necessitating the correct modeling of the quantum process for noise
removal. A relevant flaw is the need to trust in the device and its components is integral
for the security of these generators.

2. Self-Testing Quantum Random Number Generators: These generators perform
tests on the generated sequence due to limited confidence in the implemented physical
process. The testing could rely on classical tests or on the verification of quantum en-
tanglement, via Bell inequalities. Such generators are also known as device-independent
QRNGs. These generators are often slower or require additional complex testing appa-
ratus due to the complexity of the testing process.
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3. Semi-Testing Quantum Random Number Generators: These generators are a
compromise between the previous two categories. In these devices, some level of con-
fidence in the implementation reduces the need for extensive testing, optimizing speed
parameters at the cost of confidence in the generated randomness. While some compo-
nents in these devices are considered safe due to precise characterization, others need
more extensive testing.

However, a key component is still missing: how to know if the numbers were generated by
an honest quantum device? This question is the bedrock of certifiable quantum randomness,
and we heavily discuss it in further sections.

3.2 Evaluating a PQRNG on a real quantum computer

The article [TS21] provides a comprehensive analysis and case study of using a real quantum
computer to generate large sequences of random numbers, and then submitting them to
statistical tests. 579 samples were obtained from the IBM 20Q Poughkeepsie, featuring 20
qubits, each producing 579 samples with a length of 8192 bits. The next figure illustrate the
author’s results.

The authors conclusion was that the random number generation procedure failed to surpass
the testing threshold, as seen in the figure. Both real device and simulator samples underwent
a statistical review to assess bias and patterns. The min-entropy was calculated to examine
the uniformity of each sample. The changes in min-entropy indicated distinct characteristics
of the qubits. A notable decrease in min-entropy was observed in qubit [17]. A histogram
depicting the ratio of 1s in the sequences of 4,743,168-bits, generated by each qubit, suggested
that none of the qubits yielded an adequate proportion of 1s. However, the stability of each
qubit was evaluated using time-series data from the proportion of 1s, and qubits [0] and [12]
were found to be relatively steady. Eventually, the 529 samples from the 20 qubits underwent
eight tests from NIST SP 800-22. No qubit met the suite test standards, but the results
indicated that qubits [0] and [12] came closest to the ideal proportion of passed samples in
each test.
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This example illustrates that modern quantum computers are far away from the perfect
devices discussed in theory, and thus can often produce outputs that may seem to contradict
the expected results predicted by quantum computing.

4 Certified Randomness from Quantum Supremacy

This section consists of an in-depth discussion regarding the recent findings of Scott Aaronson
and Shih-Han Hung in [AH23]. The authors propose a way of reliably generating cryptograph-
ically certified random bits, i.e., a QRNG system that allows the users to verify its legitimacy.
This is an extremely relevant property for enhancing user’s trust in security and cryptograph-
ical systems in general, since the existence of a backdoor is a direct threat to user’s privacy.

The aforementioned article is, however, quite long and detailed, with more than 80 pages
of content, and so, instead of trying to summarize the entirety of the article, we’ve decided to
focus on the sections that we consider to be the most relevant and most descriptive of their
overall findings, namely sections 3 and 5 of [AH23]. Section 3 provides useful mathematical
facts, that are then used in Section 5 to describe a weaker version of the paper’s main result
under the assumption that the quantum device does not share an entangled state with a
possible adversary trying to predict the device’s output. Overall, the findings of these sections
together with the mathematical tools and concepts used to prove them are a perfect fit for
the scope of our work. The main sources for all of the following subsections were [AH23,
AAB+19, NRK+18].

Over the next subsections, we let N = 2n denote the dimension of the Hilbert-space, and let
D be a probability distribution over U(N), where U(N) denotes the group of N ×N unitary
matrices. Since every quantum circuit can be represented by a unitary matrix, defining a
distribution over U(N) equates to defining a distribution over the set of all possible quantum
circuits. We also use x ∼ P to denote that x is sampled from the distribution P .

4.1 Quantum Supremacy and the LXEB Problem

We now turn our attention to the main problem studied in [AH23, AAB+19], know as Linear
Cross-Entropy Benchmarking (LXEB).
Definition 16 (Linear Cross-Entropy Benchmarking) Let D be a probability distribu-
tion over U(N), C drawn from D and pC(s) = ∣⟨s∣C ∣0⟩⊗n∣2. For a set of samples s1, s2, ..., sk,

si ∈ {0,1}n, define FLXEB(b,k) as:

FLXEB(b,k)(s1, ..., sk) ∶=
N

k
(

k

∑
i=1

pC(si)) − b (15)

The LXEB(b, k) problem consists of generating samples such that FLXEB(b,k) ≥ 0, i.e., ensur-
ing that

1

k

k

∑
i=1

pC(zi) ≥
b

N
(16)

The LXEB was defined in the context of the experiments of Quantum Supremacy, performed
by Google’s Sycamore, and most recently by USTC’s Jiuzhang. The main idea of the experi-
ment, which is often referred to as Random Circuit Sampling (RCS), can be summarized as
follows: a user generates a random quantum circuit C and then sends it to a server running
a quantum computer (QC), the server then applies the circuit to the ∣0⟩⊗n state, measures it
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with the computational basis, and then returns the output string to the user – and the server
response needs to be fast –. This process is repeated multiple times, and then the user applies
a statistical test to check if the results are indeed consistent with a QC running the circuit
C. The LXEB is one such statistical test, where the user receives the output strings and then
computes FLXEB(b,k) in the classical computer, and if the test succeeds, then the user can be
certain that, with high probability, the server’s QC did indeed run C.

Currently, there is no known algorithm for efficiently simulating a QC on a classical com-
puter, and so in the context of the RCS task, for a large enough number of qubits, a classical
strategy has little to do other than to randomly sample strings from the uniform distribution
over {0,1}n, and then send them to the user as output. This strategy clearly works in the case
where b = 1, since the expected value of the sum of the probabilities would be exactly k/N ,
however, if b > 1, one would expect any efficient classical strategy to fail the LXEB problem.
On the other hand, from Lemma 1, we see that a noiseless QC would have an expected LXEB
fidelity of FLXEB(b,k) = 2(N/(N +1))− b, and so for values of b < 2, a noiseless QC is expected
to solve LXEB(b, k) with high probability, given that the number of samples is large enough.
For this reason, solving the RCS task via the LXEB problem can be seen as a way of achieving
“Quantum Supremacy”: if we set b > 1, for sufficiently large number of samples k, only a QC
would be able to return samples that pass the LXEB(b, k) test, i.e., there is a real advantage
of using a QC for this specific task. Google’s 2019 experiment [AAB+19] achieved such result
using b ≈ 1.002 , and 54 qubits in their Sycamore processor.

One of the most important properties of the LXEB is that the probabilities pC(si) can
be computed directly with ∣⟨s∣C ∣0⟩⊗n∣2. This is extremely useful since it means that one does
not need to make multiple runs of the circuit in order to create a large enough sample for
approximating the true probability with the empirical probability. As a direct consequence, if
one has access to the samples zi and the unitary matrix representing C, the probabilities can
be calculated on a classical computer. This plays a key-role in the cryptographically-certified
QRNG envisioned by Aaronson and Hung: if we imagine a QC running the circuit C on a
server and outputting the samples zi to a user, if they have access to the unitary matrix
representing C and the parameter b, than they can compute FLXEB(b,k). Moreover, as we will
see in further sections, the authors of [AH23] show that, under some complexity assumptions,
one can derive a lower bound to the number of random bits in the output of a quantum
algorithm that solves the LXEB problem. This implies that the user can compute FLXEB(b,k)
and use the result to be sure that some of the received bits are indeed random. Aaronson and
Hung’s protocol can then be summarized as follows:

1. A user generates a sequence of n-qubit circuits C1,C2, ...,CM pseudorandomly w.r.t. a
small random seed and sends them to a server.

2. For every Ci, the server quickly returns k n-bit strings. If the server is indeed honest,
then the strings are samples from the output distribution of Ci∣0⟩⊗n.

3. The user uses their seed to choose a subset of the circuits, and then checks if the k

samples returned from the QC pass the LXEB(b, k), b ∈ (1,2).

4. If the checks pass, then the user feeds the strings into a classical randomness extractor
to get nearly n pure random bits.
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However, it is important to stress the following: the unitary matrix representing C is
a 2n × 2n matrix, and so computing FLXEB(b,k) would still take exponential time on the
number of qubits. This is one of the downsides of the protocol, since it means that for a
relatively small number of qubits, e.g., 50 qubits, the user would require a supercomputer
in order to compute FLXEB(b,k). On the other hand, the author’s protocol is also one of the
few practical applications of quantum computing that inherently requires a QC and is also
physically realizable with today’s QCs.

The LXEB has many relevant practical properties when it comes to the implementation
of a QC, however such properties are not within the scope of this article, and so we refer the
reader to [AAB+19, NRK+18] for further information. It also has possible limitations and
flaws that are extremely relevant for designing future experiments, however again these are
beyond the scope of this article, and so we also refer the reader to [GKC+21, AGL+23] for
further insight.

4.2 The Hardness Assumption

We begin by defining an essential problem to the results in [AH23], known as Long List
Quantum Supremacy Verification (LLQSV). In the following descriptions, D will denote a
probability distribution over U(N), and such term will often be omitted when it is either
obvious from the context or irrelevant to the discussion.
Definition 17 (Long List Quantum Supremacy Verification) Let M = O(N3). Sup-
pose we are given access to n-qubit quantum circuits C1, ...,CM drawn independently from D,
and strings s1, ..., sM , si ∈ {0,1}n, and let pCi denote the output distribution of Ci, pCi(z) =
∣⟨z∣Ci∣0n⟩∣2. The LLQSV(D) problem consists distinguishing between the following cases:

• Yes-case: each si is sampled from Ci, i.e., si ∼ pCi

• No-case: each si is sampled from a uniform distribution over {0,1}n (hence indepen-
dent of Ci)

The LLQSV problem then consists of building an algorithm that, given a long list of circuits
(exponential on the number of qubits n), can distinguish between strings that came from the
output distribution of such circuits and strings sampled uniformly from the set of all n-bit
strings. Note that this problem is closely related to the aforementioned Quantum Supremacy
experiments: we can think of the input circuits C1, ...,CM as the circuits sent from the user
to the server, and the strings s1, ..., sM as the server’s response. The problem then consists of
designing a quantum algorithm for the server that can efficiently convince the user to accept
the response, and in the context of the LXEB test, this can be thought as ensuring that the
output strings pass the LXEB. In the case of an honest server, just running the circuits on a
QC and returning the measured outputs would suffice, however we do need to account for a
dishonest server.

In a classical scenario, one would expect that there is no way for a classical algorithm to
distinguish between a Yes-case and a No-case in polynomial time, since in order to determine
if a given si was sampled from Ci, one would need to simulate Ci, and that would classically
require exponential time on the number of qubits. This of course depends on the assumption
that there is no efficient classical algorithm for simulating a QC, which has not yet been
proven, however it is mostly a consensus amongst experts.
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In the quantum scenario, the question about if there exists a quantum algorithm that does
not sample from the circuit’s output distribution but still convinces the user to accept the
strings remains open. In order to derive their results, however, Aaronson and Hung assume
that there is no such algorithm. They refer to this assumption as the Long List Hardness
Assumption (LLHAB(D)) w.r.t. a parameter B < n and a probability distribution D over
U(N).
Assumption 1 (Long List Hardness Assumption) Let D be a probability distribution
over U(N), then LLQSV(D) ∉ QCAMTIME(2BnO(1))/q(2BnO(1)).
The LLHA is assuming that there is no Arthur-Merlin protocol where Arthur sends Merlin an
nO(1)-bit classical string, then Merlin replies with an nO(1)-bit proof that convinces Arthur
of the Yes-case, even if Arthur can do the verification using a 2B-time quantum algorithm,
with 2B qubits of quantum advice. In other words, the authors are assuming that there is
no quantum algorithm that can efficiently trick Arthur into making a mistake, and so if a
quantum algorithm is efficiently solving the LLQSV problem, it must be doing so by sampling.
As we will see in future sections, this will allow us to derive a lower-bound for the number of
random bits in the output of any quantum device that passes the LXEB problem.

4.3 An overview of the proof

Here we provide an outline of the strategy used by Aaronson and Hung to prove the main
theorem of Section 5 of [AH23], that result being: assuming the LLHA, then any QC solving
the LXEB problem must output at least Ω(n) random bits, i.e., the protocol summarized in
section 4.1 does indeed work under the LLHA. The proof will follow by contradiction, and will
be organized as follows:

(1) In subsection 4.4 we define a classical Arthur-Merlin protocol that has extremely useful
properties for our purposes, and then in subsection 4.5 we explain how to adapt such
protocol to the quantum scenario. More importantly, we show how, given a quantum
Merlin-Arthur protocol satisfying some technical requirements, one can create a quantum
Arthur-Merlin protocol with bounded gap.

(2) Then, in subsection 4.6, we assume the existence of a quantum algorithm that solves the
LXEB with low-entropy, i.e., an algorithm whose outputs have less than Ω(n) random
bits. This can be seen as assuming that there is a way of designing a dishonest QC server,
in the context of the RCS task described in subsection 4.1, that can pass the LXEB test
made by the user. We then proceed to derive a series of useful results that will allow us
to prove that our quantum algorithm gives birth to a Merlin-Arthur protocol satisfying
our desired technical requirements.

(3) After this, in subsection 4.7, we show how to create a quantum Arthur-Merlin algorithm
solving the LLQSV problem – described in subsection 4.2 – in polynomial time.

(4) Finally, in subsection 4.8, we show that this directly contradicts the LLHA, and so indeed
if the LLHA holds, then any quantum device solving the LXEB problem must output
nearly n pure random bits.
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4.4 The Goldwasser-Sipser protocol

In order to prove their main result, Aaronson and Hung heavily rely on the Goldwasser-Sipser
protocol (GSP) for approximate counting [GS86]. In this subsection, we briefly describe
such protocol and its useful properties, and as a main source, we will be using Professor
Feigenbaum’s lecture notes on computational complexity [Fei15].

The GSP protocol consists of a Arthur-Merling protocol, i.e., two messages are exchanged
between Arthur and Merlin: Arthur first makes a sample and sends it to Merlin, which in
turn must produce a proof and send it back to Arthur. Arthur has access to a set S ⊆ {0,1}n
and an integer K. Merlin’s goal is to send a proof that convinces Arthur that ∣S∣ ≥ K. The
protocol then will have the following property: if Merlin is telling the truth, then Arthur
accepts it with high probability, and if Merlin is making a highly incorrect claim, i.e., if
∣S∣ ≤K/2, then Arthur rejects it with high probability. A pseudocode description of the GSP
is given in Algorithm 1.

Algorithm 1 Goldwasser-Sipser protocol
Input: S ⊆ {0,1}n,K ∈ Z
Assume: let Hn,R = {f ∶ {0,1}n ↦ {0,1}R} be a family of pairwise-independent hash-
functions, where 2R−2 <K ≤ 2R−1

Arthur chooses f ∈Hn,R and y ∈ {0,1}R
Arthur sends Merlin the pair (f, y)
Merlin finds x ∈ S ∶ f(x) = y
Merlin sends Arthur the pair (x,π), where π is a proof that x ∈ S
Arthur accepts if f(x) = y and π is valid, otherwise rejects

It can be shown that such protocol indeed achieves the aforementioned property, although
we will not prove this here directly. However, we will prove a similar result to a quantum
analogue of the GSP in the following subsections.

4.5 Bounding the gap of the Quantum GSP

Let D denote a distribution over U(N), and U denote the uniform distribution over the set
{0,1}n. Consider the same scenario as in definition 17: we have access to M tuples (Ci, si),
with Ci ∼ D, and si ∼ pCi or si ∼ U . Let V be a Quantum Merlin-Arthur protocol with
running time 2BnO(1) for the LLQSV problem, and assume that V accepts at least K tuples
from the Yes-case of LLQSV – which gives a lower bound on the number of correct guesses
from the algorithm –, and accepts at most (1 − Ω(ϵ))K tuples from the No-case of LLQSV
– which in turn gives an upper bound on the number of incorrect guesses of the algorithm –,
both with probability 1 − 2−Ω(n). From this, we can create a quantum analogue of the GSP
using V, described in Algorithm 2, and referred to as Quantum Goldwasser-Sipser protocol
(QGSP).

We are now interested in finding a bound for what is known as the protocol gap. This gap
is defined as the difference between the probabilities of the protocol correctly and incorrectly
accepting an arbitrary instance. In our case, we will prove that the gap of the QGSP is at
least ϵ2/4α, for parameters ϵ > 0, α > 1.
Lemma 2 Given real numbers α > 1, ϵ ∈ (0,1], and K ∈ Z, there exists a Quantum Arthur-
Merlin protocol which, given a set S as input, determines if K ≤ ∣S∣ ≤ αK or ∣S∣ ≤ (1 − ϵ)K
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Algorithm 2 Quantum Goldwasser-Sipser protocol
Input: (C1, s1), ..., (CM , sM), real parameters α > 1,R and K ∈ Z

Arthur chooses a random hash function f ∶ [M]↦ [R] and y ∈ [R]
Arthur sends Merlin the pair (f, y)
Merlin finds x ∈ [M] ∶ f(x) = y
Merlin sends Arthur the pair (x,π), where π is a proof that x ∈ [M]
Arthur accepts if V accepts (Ci, si) with proof π and if f(x) = y, otherwise rejects

with gap at least ϵ2/4α, using a hash function of range size R = 2αK/ϵ.
Proof. As seen in the definitions of section 2.5, in the context of an Arthur-Merlin protocol,
the probability of accepting a given input is determined by

P
f,y
[∃x ∈ S, f(x) = y] (17)

for a random hash function f of range size R, since it suffices for Merlin to find a string x ∈ S
such that f(x) = y. Thus, we can compute the gap by obtaining both a lower and upper
bound to this probability.

From the union bound inequality, we know that given events E1, ...,En, we have that

P[⋃
i

Ei] ≤∑
i

P[Ei] (18)

Note that the event E = ∃x ∈ S is the same as ⋃iEi, where Ei is the event that xi ∈ S, for all
xi ∈ {0,1}n. Thus, we have that

P
f,y
[∃x ∈ S, f(x) = y] = P

f,y
[ ⋃
xi∈{0,1}n

[xi ∈ S, f(x) = y]]

≤ ∑
xi∈{0,1}n

P
f,y
[xi ∈ S, f(x) = y]

= ∑
xi∈S

P
f,y
[f(x) = y] = ∣S∣

R

(19)

since P[xi ∈ S, f(x) = y] = 0 for xi ∉ S, and so we obtain an upper bound to Equation 17.
For the lower bound, we recall the inclusion-exclusion principle: given events E1, ...,En,

we have that
P[⋃

i

Ei] ≥∑
i

P[Ei] −∑
i<j

P[Ei ∩Ej] (20)

We now apply such principle as follows

P
f,y
[∃x ∈ S, f(x) = y] ≥ (∑

xi∈S
P
f,y
[f(x) = y]) − ( ∑

x≤z;x,z∈S
P
f,y
[f(x) = f(z) = y])

= ∣S∣
R
− (∣S∣

2
) 1

R2
= ∣S∣

R
(1 − ∣S∣ − 1

2R
)

> ∣S∣
R
(1 − ∣S∣

R
)

(21)

therefore obtaining the desired lower bound.
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Now we consider the case where K ≤ ∣S∣ ≤ αK. By Equation 21, we obtain

C1 ∶= P
f,y
[∃x ∈ S, f(x) = y] > ∣S∣

R
(1 − ∣S∣

R
)

≥ K

R
(1 − αK

R
)

≥ K

R
(1 − ϵ

2
)

(22)

since R = 2αK/ϵ. For the other case, i.e., ∣S∣ ≤ (1 − ϵ)K, we obtain by Equation 19 that

C2 ∶= P
f,y
[∃x ∈ S, f(x) = y] ≤ ∣S∣

R
≤ K

R
(1 − ϵ) (23)

The gap is then given by

C1 −C2 >
K

R
(1 − ϵ

2
) −C2 ≥

K

R
(1 − ϵ

2
) − K

R
(1 − ϵ) = ϵ2

4α
(24)

Therefore, the gap of the protocol is at least ϵ2

4α
, as desired. ∎

4.6 A low-entropy device solving the LXEB

In this subsection, we assume the existence of a low-entropy quantum device solving the
LXEB problem. Our goal now is to show that this device satisfies the properties of the
quantum algorithm V described in the last subsection, in order for use the QGSP for LLQSV
problem, together with Lemma 2, to show that such algorithm violates the LLHA, arriving
at a contradiction.
Assumption 2 (Low-entropy device solving the LXEB) Let A be a quantum device
solving LXEB(b, k) with probability q over choices of C ∼ D. By definition, A outputs k-
tuples (s1, ..., sk) that come from the output distribution of C. We further assume that, with
probability p, the min-entropy of (s1, ..., sk) w.r.t. C is at most B/2, i.e.,

P[− log(max
i

pC(si)) ≤
B

2
] = p (25)

which can be rearranged into

P[max
i

pC(si) ≥
1

2B/2
] = p (26)

We also assume that that p, q satisfy

p > b

b − 1
(1 − q) + ϵ (27)

Recall that B is a parameter such that the Quantum Merlin-Arthur algorithm V defined in the
QGSP runs on 2BnO(1) time, which is also the same parameter defined for the LLHAB(D).
Now, define the random variable Yτ(C, si), τ ∈ [0,1], s ∈ {0,1}n as

Yτ(C, s) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if ∃O = (z1, ..., zk) ∶ P[A(C) = O] ≥ τ
2B/2

and s ∈ (z1, ..., zk)
0 otherwise.

(28)
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This random variable returns 1 if there is at least one k-tuple in the output distribution of
A(C) that has probability at least τ/2B/2, and one of the elements of the k-tuple equals to s.
In the next Lemma, we will also use O ∼ A(C) to denote a k-tuple samples from the output
distribution of A(C). We now define two expectations w.r.t. Yτ(C, s) as follows

µ0(τ) ∶= E
C∼D,s∼U

[Yτ(C, s)]

µ1(τ) ∶= E
C∼D,s∼pC

[Yτ(C, s)]
(29)

Finally, we define the following probability

p(τ) ∶= P
C∼D
[max

d
P[A(C) = d] ≥ τ

2B/2
] (30)

This is the probability that A(C)’s maximum probability is at least τ/2B/2, w.r.t. all C ∼ D.
Moreover, if we model A(C) as a random variable, note that we can use Equation 26 to
conclude the following

max
d

P[A(C) = d] ≥ τ

2B/2
⇐⇒ − log(max

d
P[A(C) = d]) ≤ − log( τ

2B/2
)

⇐⇒Hmin(A(C)) −
B

2
≤ − log(τ)

⇒ p(τ) = P
C∼D
[Hmin(A(C)) −

B

2
≤ − log(τ)]

(31)

This means that the probability defined in Equation 30 is the probability that the gap between
the min-entropy of the output samples (s1, ..., sk) and B/2 is at most − log(τ). Also note that,
since − log(1) = 0, we can combine Equations 31 and 25 to conclude that p(1) = p, i.e., if we
set τ = 1, the probability p(τ) is measuring exactly the probability that our outputs have
min-entropy at most B/2.

We can now also provide an intuitive interpretation for the expressions defined in Equations
28 and 29. Note that, by definition, if Yτ(C, s) = 1 then there exists an output O = (z1, ..., zk)
s.t. P[A(C) = O] ≥ τ/2B/2, which in turn implies by Equation 31 that Hmin(A(C)) −B/2 ≤
− log(τ), i.e., there is at least one output of our algorithm such that the gap between its min-
entropy and B/2 is at most − log(τ), and such that there is an output of A(C) that contains
s, i.e., this implies that p(τ) > 0. Therefore, if Y1(C, s) = 1 then the output distribution of
A(C) indeed has min-entropy at most B/2 and p(1) = 1.

The expectation µ0(τ) then can be seen as the expected number of output distributions
A(C) that produce outputs with gap between their min-entropy and B/2 at most − log(τ), and
that can contain the string s, for all strings s in the uniform distribution, and for all circuits
C over D. The expectation µ1(τ) computes a similar quantity, but this time w.r.t. strings
sampled from the output distribution of the circuit C. Also, we highlight that µ0(1), µ1(1)
compute the expected number of output distributions that produce outputs with min-entropy
at most B/2, w.r.t. their respective string distributions.

The expectations µ0(τ), µ1(τ) are closely related to the LLHAB(D) task, and we can
interpret their ratio as the ratio between the expected number of output distributions that
respect the assumption made in Equation 25 and the ones that don’t. We now seek to bound
the ratio µ1(τ)/µ0(τ) using p, q, p(τ).
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Lemma 3 If τ ∈ [0,1] and µ0(τ), µ1(τ), p(τ) are defined as above, then

µ1(τ)
µ0(τ)

≥ b ⋅ p(τ) + q − 1
p(τ)

(32)

Proof. Recall that, by definition, we have to analyze two cases w.r.t. the string s in the
context of the LLQSV problem: the yes case, where the s ∼ pC , and the no case, where
s ∼ U . Recall also that V is defined to be a quantum Merlin-Arthur algorithm for the LLQSV
problem.

First, define
Gτ(C) ∶= χ[max

d
P[A(C) = d] ≥ τ

2B/2
] (33)

that is, the indicator function for the event that the maximum probability of A(C) is at least
τ/2B/2 for a fixed C ∼ D. Note that, by Equation 30

p(τ) = PC∼D[Gτ(C) = 1] = PC∼D[∃d ∶ P[A(C) = d] ≥ τ/2B/2] (34)

We can now analyze each case individually:

• For the no case, s ∼ U , hence

µ0(τ) = E
C∼D,s∼U

[Yτ(C, s)]

= P
C∼D,O∼A(C),s∼U

[Gτ(C) = 1, s ∈ O]

= P
C∼D
[Gτ(C) = 1]

k

N
= p(τ) ⋅ k

N

(35)

• For the yes case, s ∼ pC . Let Θ(C,O) denote a verifier for an instance of the LXEB(b, k)
problem, that is, let

Θ(C,O) ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if ∑k
i=1 pC(zi) ≥ bk

N
, where O = (z1, ..., zk)

0 otherwise.
(36)

Hence, we have that

µ1(τ) = E
C∼D,s∼pC

[Yτ(C, s)]

= P
C∼D,O∼A(C),s∼pC

[Gτ(C) = 1, s ∈ O]

≥ P
C∼D,O∼A(C),s∼pC

[Gτ(C) = 1, s ∈ O,Θ(C,O) = 1]

(37)

By conditioning, we can decompose the last term of the previous equation into two
terms

P
C∼D,O∼A(C),s∼pC

[s ∈ O∣Gτ(C) = 1,Θ(C,O) = 1]

P
C∼D,O∼A(C),s∼pC

[Gτ(C) = 1,Θ(C,O) = 1]
(38)

Note that for the first term, we have

P
C∼D,O∼A(C),s∼pC

[s ∈ O∣Gτ(C) = 1,Θ(C,O) = 1] ≥
bk

N
(39)
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since if Θ(C,O) = 1, the probability that Ps∼pC
[s ∈ O] = ∑s′∈O pC(s′) ≥ bk/N by Equa-

tion 36. By the union bound inequality, we have that

P
C∼D,O∼A(C),s∼pC

[Gτ(C) = 1,Θ(C,O) = 1] ≥ P
C∼D
[Gτ(C) = 1] + q − 1

= p(τ) + q − 1
(40)

since the probability that Θ(C,O) = 1 for any circuit C and string O ∼ A(C) is at least
q by assumption. Thus, by multiplying the terms in Equations 39,40 and combining it
with Equation 37, we get that

µ1(τ) ≥
bk

N
(p(τ) + q − 1) (41)

Therefore, we have that

µ1(τ)
µ0(τ)

≥ bk

N
(p(τ) + q − 1) ⋅ N

bkp(τ)
= p(τ) + q − 1

p(τ)
(42)

as desired. ∎
It is easy to see that the lower bound for the ratio between the expectancies is monotoni-

cally non-increasing, as proven below.
Lemma 4 The ratio (p(τ) + q − 1)/p(τ) is monotonically non-increasing for τ ∈ [0,1].
Proof. Let x, y ∈ [0,1], x ≤ y. Recall that p(τ) = PC∼D[∃d ∶ P[A(C) = d] ≥ τ/2B/2], hence
if x ≤ y ⇒ p(x) ≥ p(y), since if there exists a d such that P[A(C) = d] ≥ y/2B/2, then
P[A(C) = d] ≥ x/2B/2. Since q is a probability, note that q − 1 ≤ 0, thus we have that

p(y) ≤ p(x)⇒(q − 1) ⋅ p(y) ≥ (q − 1)p(x)
⇒(q − 1) ⋅ p(y) + p(x)p(y) ≥ (q − 1) ⋅ p(x) + p(x)p(y)
⇒p(y)(p(x) + q − 1) ≥ p(x)(p(y) + q − 1)

⇒p(x) + q − 1
p(x)

≥ p(y) + q − 1
p(y)

(43)

as desired. ∎
We can now combine Lemmas 3 and 4 to obtain the following

µ1(τ)
µ0(τ)

≥ µ1(1)
µ0(1)

≥ b ⋅ p(1) + q − 1
p(1)

= b ⋅ p + q − 1
p

≥ 1 + ϵ (44)

since, as previously discussed, p(1) = p.
Equation 44 allows us to conclude that the ratio between the expected number of output

distributions that respect the assumption made in Equation 25 and the ones that don’t exceeds
one, and thus µ1(τ) − µ0(τ) > 0, i.e., our assumption is indeed reasonable.

4.7 From Merlin-Arthur to Arthur-Merlin

In the previous subsection, we assumed the existence of a low-entropy device that solves
the LXEB problem, and then proceeded to prove a series of Lemmas regarding such device.
Equation 44 is almost what we need for us to use the QGSP in order to build an Arthur-Merlin
protocol for the LLQSV, however, we do not yet know how to verify if Yτ accepts an instance
(C, s) in time 2BnO(1). The following Lemma aims to, for a fixed large enough T , find an
index j that allows us to verify such condition efficiently.
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Lemma 5 Let µ1(τ), µ0(τ) be defined according to Equation 29, and also assume that Equa-
tion 27 holds. Then for a given T ≥ 8

ϵ
log(N

ϵ
) ∶ ∃j ∈ [T ] such that

µ1(1/2 +
j

T
) ≥ (1 + ϵ

2
)µ0(1/2 +

j − 1
T
) (45)

Proof. We prove the Lemma by contrapositive. Assume that

∀j ∈ [T ] ∶ µ1(1/2 +
j

T
) < (1 + ϵ

2
)µ0(1/2 +

j − 1
T
) (46)

We can consider the ratio µ1(1/2)/µ1(1) and expand it into a telescoping product to obtain

µ1(1/2)
µ1(1)

=
T

∏
j=1

µ1(1/2 + j
T
)

µ1(1/2 + j+1
T
)

> (1 + ϵ

2
)−T

T

∏
j=1

µ1(1/2 + j
T
)

µ0(1/2 + j
T
)

(47)

Combining Lemma 4 with Equation 44 yields

µ1(1/2)
µ1(1)

> ( 1 + ϵ
1 + ϵ/2

)T

≥ (1 + ϵ

4
)T

(48)

since 1 + ϵ − (1 + ϵ) − (1 + ϵ/2)(1 + ϵ/4) ≥ 0, for ϵ ≤ 2. We then let T ≥ 8
ϵ
log(N

ϵ
), implying that

µ1(1/2) > (1 +
ϵ

4
)T ⋅ µ1(1)

≥ k

N
⋅ ϵ ⋅ (1 + ϵ

4
)T

≥ k

N
⋅ ϵ ⋅ 2ϵ

T
8

≥ k

(49)

but since k ≥ 1, this implies that µ1(1/2) > 1, a contradiction, thus T < 8
ϵ
log(N

ϵ
), as desired.

∎
The previous Lemmas allows us to derive Merlin-Arthur protocol that verifies if s ∼ pC in

time 2B ⋅ T 2 ⋅ nO(1), which is described in Algorithm 3.
We now recall a useful result that will be used extensively on future proofs, and we shall

state it without a proof.
Proposition 2 (Hoeffding’s Inequality) Let X1,X2, ...,Xn be independent random vari-
ables such that P[ai ≤Xi ≤ bi] = 1, for real numbers ai, bi, and let Sn = ∑iXi. Then, ∀t > 0,

P[Sn −E[Sn] ≥ t] ≤ exp(−
2t2

∑n
i=1(bi − ai)2

)

P[∣Sn −E[Sn]∣ ≥ t] ≤ 2 exp(−
2t2

∑n
i=1(bi − ai)2

)
(51)
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Algorithm 3 Merlin-Arthur protocol for verifying if s ∼ pC
Input: circuit C, string s ∈ {0,1}n,K ∈ Z

Merlin sends a k-tuple d = (z1, ..., zk) to Arthur, where each zi ∈ {0,1}n
Arthur makes K + 1 samples of A(C), denoted as d1, ..., dK ,O, where each sample is in
turn a k-tuple of strings
Arthur accepts if

ν̃ ≥ (τ − 1

2T
)2−B/2, (50)

where ν̃ ∶= 1
K
∣{l ∶ dl = d}∣, and s ∈ O, and rejects otherwise.

We highlight the special case where n = 1, then:

P[X −E[X] ≥ t] ≤ exp(− 2t2

(b − a)2
)

P[∣X −E[X]∣ ≥ t] ≤ 2 exp(− 2t2

(b − a)2
)

(52)

∎
We are now extremely close to arriving at a contradiction: we just need to show that

this Merlin-Arthur protocol does indeed solve the LLQSV problem in polynomial time. The
following two Lemmas will prove precisely that.
Lemma 6 For τ ∈ [1/2,1], η = O(1/N2),K ≥ 4T 22Bn, Algorithm 3 satisfies the following:

1. If Yτ(C, s) = 1, then Arthur accepts with probability 1 − η.

2. If Yτ−1/T (C, s) = 0, then Arthur rejects with probability 1 − η.

Proof. If Yτ(C, s) = 1, then by definition ∃O = (z1, ..., zk) ∶ P[A(C) = O] ≥ τ/2B/2, but since
τ/2B/2 > τ/2B , this also implies that there exists an O = (z1, ..., zk) ∶ P[A(C) = O] ≥ τ/2B .
We can then use Hoeffding’s inequality to show that

P[∣ν̃ − P[A(C) = O]∣ ≥ 1

2T
2−B/2] ≤ 2 exp(−2 K

4T 22B
) ≤ 2 exp(−2n) (53)

implying that Arthur rejects with probability at most 2 exp(−2n), and since η = O(1/N2),
this means that he accepts with probability 1 − η. If Yτ−1/T (C, s) = 0, then for every O such
that s ∈ O

P[A(C) = d] < τ − 1/T
2B/2

(54)

we can then apply Hoeffding’s inequality again to obtain that Arthur accepts with probability
at most 2 exp(−2n), and thus he rejects with probability 1 − η. ∎

We can now show that, for M ≥ N3, Algorithm 3 accepts that at least K tuples from the
Yes-case of LLQSV, and accepts at most (1 − Ω(ϵ))K tuples from the No-case of LLQSV,
both with probability 1 − 2−Ω(n), i.e., that such algorithm satifies the condition for using the
QGSP.
Lemma 7 Let M ≥ N3, η′ = 2−Ω(N). Then ∃K ∈ [M] such that, wich probability at least
1 − η′, Arthur accepts at least K tuples in an Yes-case of the LLQSV, and accepts at most
K ′ = (1 − ϵ/5 +O(ϵ2))K tuples in a No-case of the LLQSV.
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Proof. Recall that µ1(τ) = E
C∼D,s∼pC

[Yτ(C, s)], and that µ0(τ) = E
C∼D,s∼U

[Yτ(C, s)]. Note that

any given tuple, both in the Yes-case and the No-case of the LLQSV, is sampled independently,
thus, by Lemma 6, Arthur accepts each sample with probability at most µ0(τ) + η. We can
then set K ′ = (µ0(τ) + η)(1 + ϵ/8)M , and conclude using Hoeffding’s inequality that

P
C1,...,CM∼D,s1,...,sm∼U

[Arthur accepts more than K ′ tuples] ≤ 2 exp(−Mϵ2(µ0(τ) + η)2

32
)

= 2 exp(−Ω(Mϵ2k2p2

N2
))

≤ 2 exp(−Ω(Mϵ4k2

N2
))

(55)

since, according to Equation 27, µ0(τ) = p(τ)k/N ≥ pk/N ≥ ϵk/N . Since we assume that
M ≥ N3, this yields that

P
C1,...,CM∼D,s1,...,sm∼U

[Arthur accepts more than K ′ tuples] ≤ 2 exp(−Ω(N)) (56)

implying that Arthur accepts at most K ′ tuples with probability at least 1− 2 exp(−Ω(N)) ≥
1 − η′. Now for the Yes-case, we can take K = (µ1(τ) − η)(1 − ϵ/8)M , and conclude again by
Hoeffding’s inequality that

P
C1,...,CM∼D,si∼pCi

[Arthur accepts fewer than K tuples] ≤ 2 exp(−Mϵ2(µ1(τ) − η)2

32
)

≤ 2 exp(−Ω(Mϵ2k2p2

N2
))

(57)

since η = O(1/N2), µ1(τ) − η = Ω(µ1(τ)) = Ω(µ0(τ)) = Ω(pk/N), which in turn implies that
Arthur accepts at least K tuples in the Yes-case with probability at least 1−η′. We now need
to show that K ′/K = (1 − ϵ/5 +O(ϵ2)), but since η = o(ϵ), we have that

K ′

K
≤ µ0(τ) + η
µ1(τ) − η

⋅ 1 + ϵ/8
1 − ϵ/8

≤ µ0(τ) + η
µ1(τ) − η

⋅ 1

1 − ϵ/4

≤ 1

1 + ϵ/4 −O(η)

≤ 1

1 + ϵ/5
≤ 1 − ϵ/5 +O(ϵ2)

(58)

as desired. ∎
Thus, we have shown that our low-entropy device solving LXEB does indeed give birth

to a Merlin-Arthur protocol for the LLQSV problem that satisfies the necessary conditions
for the QGSP, stated in subsection 4.5. We can now provide a full description of the QGSP
derived from our low-entropy device, which is described in Algorithm 4.
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Algorithm 4 Quantum Goldwasser-Sipser Protocol for the LLQSV problem, using a low-
entropy device that solves the LXEB
Input: both Merlin and Arthur are given access to (C1, s1), ..., (CM , sM), and integers T, j ∈
[T ],R.

Arthur chooses a random hash function f ∶ [M]↦ [R], and uniformly chooses y ∈ [R]
Merlin sends an integer i and d = (z1, ..., zk) to Arthur
Given K ≥ 4T 22Bn, Arthur takes K + 1 samples d1, ..., dk,O ∼ C. He accepts if

(a) ν̃ ≥ (τ − 1
2T
)2−B/2, where ν̃ = 1

K
∣{l ∶ dl = d}∣, τ = 1/2 + j/T ,

(b) si ∈ O, and

(c) f(i) = y

4.8 Arriving at a contradiction

We can now finally prove the main result of Section 5 from [AH23].
Theorem 1 If there exists a quantum device A which runs in quantum polynomial time

and that satisfies Assumption 2, then LLQSV(D) ∈ QCAMTIME(2BnO(1))/q(2BnO(1)), i.e.,
the LLHA is false.
Proof. The idea of this proof is to show that the aforementioned protocol solves the LLQSV(D)
problem with constant gap. Algorithm 4 describes the QGSP version of the low-entropy device
A, and by Lemma 7 we know that K ′ ≤ (1−ϵ/6)K. We can then employ Lemma 2 to Algorithm
4 to conclude that the protocol’s gap is at least ϵ2/4α, where α > 1, which in turn implies
that the gap is Ω(ϵ). Therefore, if we run a (1/ϵ)O(1)-fold parallel repetition of Algorithm 4,
we obtain a protocol with constant gap for the LLQSVB(D) problem. This in turn implies
that Algorithm 4 solves the problem in 2BnO(1) time, with advice string of size 2BnO(1), and
so we conclude that LLQSVB(D) ∈ QCAMTIME(2BnO(1))/q(2BnO(1)). ∎

We first assumed that the LLHA is true, however the previous theorem clearly contradicts
it, and thus Assumption 2 must be false, implying that there can be no low-entropy quantum
device A solving the LXEB problem under the LLHA. Moreover, we can also conclude that,
if the LLHA holds, then the negation of Equation 27 must hold, i.e.,

p ≤ b

b − 1
(1 − q) + n−ω(1). (59)

which in turn yields the following corollary.
Corollary 1 If the LLHA(D) holds for a distribution D over U(N), then every quantum
device A solving LXEB(b, k) with probability q over choices of C ∼ D satisfies

P
C∼D
[Hmin(A(C)) ≥ B/2] ≥

bq − 1
b − 1

− n−ω(1) (60)

In other words, the output of A contains Ω(n) pure random bits. ∎
The previous corollary concludes the proof. We can thus affirm that, if the LLHA holds,

the protocol described in subsection 4.1 does indeed work.

4.9 A QRNG protocol with certified randomness

Finally, we provide a full description of the protocol conceived by Aaronson and Hung for gen-
erating cryptographically certified random bits from a process similar to the RCS experiments
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described in subsection 4.1. We describe the protocol in Algorithm 5.

Algorithm 5 Aaronson and Hung’s cryptographically certified Quantum Random Number
Generator
Input: number of qubits n, a distribution D over U(2n), the constants b ∈ (1,2), k = O(n2) for
computing LXEB(b, k), the number of rounds m, and a parameter γ = O( log(n)

m
) controlling

the number of circuit updates.
for i ∈ [m] do

The user samples Ti ∼ Bernoulli(γ), where Ti will be a variable controlling if the current
round i will be a testing round

if (i > 1 ∧ Ti−1 = 1) ∨ i = 1 then
The user samples Ci ∼ D

else
The user sets Ci = Ci−1

end if
The user sends Ci to the server, and keeps Ti secret
The server returns k samples di = (z1, ..., zk)
If Ti = 1, the user sets

Wi ∶=
⎧⎪⎪⎨⎪⎪⎩

1, if FLXEB(b,k)(z1, ..., zk) ≥ 0 and Ei = 1
0, otherwise

(61)

where Ei = 0 if there exists distinct l, l′ ∈ {j ∶ Cj = Ci} such that the samples dl, dl′ are
not all distinct (this is used to prevent the server repeating responses for any two rounds
using the same challenge circuit). If Ti = 0, the user sets Wi = 0
end for
Define t = ∣{i ∶ Ti = 1}∣ as the number of test rounds. The user then computes

W = ∑
i∶Ti=1

Wi (62)

if W ≥ 0.99t then
The user accepts the server’s output, and uses (d1, ..., dm) as an input for a randomness

extractor
else

The user rejects
end if

5 Conclusion

In this work, we provide an extensive overview of the topic of Quantum Random Number
Generation and its applications to contemporary computer science, physics and mathemat-
ics. We first introduce the necessary concepts from classical RNG, classical and quantum
information theory, and quantum complexity theory that are required for fully grasping the
subject. We then proceed to discuss the notion of Quantum Randomness and formally define
the concept of a QRNG.

Finally, we discuss the recent findings of Scott Aaronson and Shih-Han Hung in [AH23].
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More specifically, we provide a full proof of one of their main results: given certain reasonable
assumptions regarding the hardness of the Long List Quantum Supremacy Verification task
with respect to the Quantum Classical Arthur-Merlin complexity class, then any quantum de-
vice solving the Linear Cross-Entropy Benchmarking problem in polynomial time must output
close to n nearly pure random bits, where n is the number of qubits of the system. This in turn
allows for the creation of a QRNG protocol with a good lower bound on the number of random
bits in its output, and that also intrinsically require the use of a quantum computer. More-
over, this protocol is designed in the context of the recent Quantum Supremacy experiments
made by Google and USTC, and so it can be implemented with current technology.

Overall, our work provides an in-depth analysis of some of the most relevant theoretical
and practical aspects of QRNG available today, while at the same time trying to be accessible
to most readers who come from a STEM background, but who might not be familiar with
QRNG, or with quantum mechanics as a whole. Therefore, this article may serve as a good
first step for any such reader interested in starting to learn about the applications of quantum
mechanics to random number generation in a more introductory yet comprehensive way.
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