Gauge Duality and Maxcut

Henrique Assumpção

Universidade Federal de Minas Gerais

henriquesoares@dcc.ufmg.br

June 30, 2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

1 Review of gauge theory

2 Applying gauge theory to Maxcut

(4日) (個) (主) (主) (三) の(の)

Let V be a finite set, and let $|| \cdot ||$ be a norm on \mathbb{R}^V . Recall the following definitions:

- \mathbb{B} denotes the **unit ball** associated with $|| \cdot ||$;
- $||y||^* = \max_{x \in \mathbb{B}} x^T y$ denotes the **dual norm** of $|| \cdot ||$;
- $\mathbb{B}^{\circ} = \{y \in \mathbb{R}^{V} | x^{T} y \leq 1, \forall x \in \mathbb{B}\}$ denotes the **polar ball** w.r.t. \mathbb{B} ;
- γ_B(x) = inf{μ ∈ ℝ₊ |x ∈ μB} denotes the Minkowski functional w.r.t. B.

We say that a norm is **sign-invariant** if ||x|| = |||x||| for any $x \in \mathbb{R}^V$, and we say that a set $\mathcal{X} \subseteq \mathbb{R}^V$ is **sign-symmetric** if $x \in \mathcal{X}$ iff $|x| \in \mathcal{X}$, similarly for any $x \in \mathbb{R}^V$.

Proposition 1 (Constructing a sign-invariant norm)

If $\mathbb{B} \subseteq \mathbb{R}^{V}$ is a sign-symmetric, compact, convex set, with $0 \in int(\mathbb{B})$ and such that $\mathbb{B} = -\mathbb{B}$, then:

- The Minkowski functional γ_B is a sign-invariant norm with unit ball given by B;
- 2 The dual norm ||y||* = max_{x∈B} x^Ty is a sign-invariant norm with unit ball given by B°.

Proposition 2 (Duality of sign-invariant norms)

If $|| \cdot ||$ is a sign-invariant norm on \mathbb{R}^V , with unit ball \mathbb{B} , then:

- B is a sign-symmetric, compact convex set with 0 in its interior, and B = -B;
- 2 $||\cdot||^*$ is a sign-invariant norm with unit ball \mathbb{B}° ;

$$\exists ||\cdot||^{**} = ||\cdot||, \text{ and } \mathbb{B}^{\circ\circ} = \mathbb{B};$$

4 For every
$$x, y \in \mathbb{R}^V$$
, we have

$$x^T y \le ||x|| \cdot ||y||^*$$

In other words, any sign-invariant norm $|| \cdot ||$ can be expressed as:

$$||x|| = \max\{x^{\mathsf{T}}y|y \in \mathbb{B}^{\circ}\} = \max\{x^{\mathsf{T}}y|y \in \mathbb{R}^{\mathsf{V}}, ||y||^* \le 1\}$$

Let $\mathcal{X} \subseteq \mathbb{R}^V_+$ be a subset of the nonnegative orthant, and consider the following definitions:

- We say that \mathcal{X} is **lower-comprehensive** if for any $y \in \mathcal{X}$, and for any $0 \le x \le y$, we have $x \in \mathcal{X}$;
- A **convex corner** is a lower-comprehensive compact convex set with nonempty interior that lies in the nonnegative orthant \mathbb{R}^{V}_{+} ;
- We define the **antiblocker** of \mathcal{X} as

$$\mathsf{abl}(\mathcal{X}) := \mathcal{X}^{\circ} \cap \mathbb{R}^{V}_{+} = \{ y \in \mathbb{R}^{V}_{+} | x^{\mathsf{T}} y \leq 1, \forall x \in \mathcal{X} \}$$

We can also define the **lower-comprehensive hull** $lc(\mathcal{X})$ of a set \mathcal{X} as the intersection of all lower-comprehensive sets that contain \mathcal{X} .

We say that a function $\kappa : \mathbb{R}^V_+ \mapsto \mathbb{R}$ is a **gauge** if:

- **1** κ is **positive semidefinite**, that is, $\kappa(w) \ge 0$ for every $w \in \mathbb{R}^V_+$, and $\kappa(0) = 0$;
- 2 κ is **positively homogeneous**, that is, $\kappa(\lambda w) = \lambda \kappa(w)$ for every $\lambda > 0$ and $w \in \mathbb{R}^{V}_{+}$;
- 3 κ is sublinear, that is, $\kappa(w + z) \leq \kappa(w) + \kappa(z)$, for every $w, z \in \mathbb{R}^V_+$.

We say that a gauge is **positive definite** if $\kappa(w) > 0$ whenever $w \in \mathbb{R}^V_+$ and $w \neq 0$, and **monotone** if $\kappa(w) \leq \kappa(z)$ whenever $w \leq z$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Lemma 3

Let $|| \cdot ||$ be a sign-invariant norm on \mathbb{R}^V , and let κ be a positive definite monotone gauge. Then:

- **1** the restriction of $|| \cdot ||$ to \mathbb{R}^V_+ is a positive definite monotone gauge;
- 2 The function $|| \cdot ||_{\kappa}$ that maps $x \in \mathbb{R}^{V}$ to $\kappa(|x|)$ is a sign-invariant norm.

Given a sign-invariant norm $|| \cdot ||$, we say that the set $\mathcal{C} = \mathbb{B} \cap \mathbb{R}^V_+$ is its **unit convex corner**. The unit convex corner of a positive definite monotone gauge is the unit convex corner of the norm $|| \cdot ||_{\kappa}$ described in the previous Lemma.

Theorem 4 (Construction of Gauges)

Let $C \subseteq \mathbb{R}^V_+$ be a convex corner. Then:

- the restriction of the Minkowski functional γ_C to ℝ^V₊ is a positive definite monotone gauge with unit convex corner C;
- 2 The restriction of the dual norm ||y||* = max_{x∈C} x^Ty to ℝ^V₊ is a positive definite monotone gauge with unit convex corner abl(C).

If κ is a positive definite monotone gauge, then the ${\bf dual}\ {\bf gauge}\ \kappa^\circ$ is given by

$$\kappa^{\circ}(z) = \max\{w^{T} z | w \in \mathbb{R}^{V}_{+}, \kappa(w) \leq 1\}$$

Theorem 5

If κ is a positive definite monotone gauge, \mathbb{B} is the unit ball of the sign-invariant norm $|| \cdot ||_{\kappa}$, and $\mathcal{C} = \mathbb{B} \cap \mathbb{R}^V_+$, then:

- **1** C is a convex corner;
- [°] is a positive definite monotone gauge with unit convex corner abl(C);

3
$$\kappa^{\circ\circ} = \kappa$$
, and $abl(abl(\mathcal{C})) = \mathcal{C}$,

4 For every $w, z \in \mathbb{R}^V_+$, we have

$$w^T z \leq \kappa(w) \kappa^{\circ}(z)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Gauges: Putting it all together

If κ is a positive definite monotone gauge, then the associated unit convex corner is $C_{\kappa} = \{w \in \mathbb{R}^{V}_{+} | \kappa(w) \leq 1\}$. If $|| \cdot ||_{\kappa}$ is the induced sign-invariant norm, its unit ball is \mathbb{B} s.t. $C_{\kappa} = \mathbb{B} \cap \mathbb{R}^{V}_{+}$. The dual norm $|| \cdot ||_{\kappa}^{*}$ is also sign-invariant, and has unit ball given by the polar \mathbb{B}° . Its restriction to \mathbb{R}^{V}_{+} induces the dual positive definite monotone gauge κ° , with unit convex corner given by $\mathbb{B}^{\circ} \cap \mathbb{R}^{V}_{+} = \operatorname{abl}(C_{\kappa})$. By gauge duality, we obtain:

$$\kappa(w) = \max\{z^{\mathsf{T}}w | z \in \mathcal{C}_{\kappa^\circ}\} = \max\{z^{\mathsf{T}}w | z \in \mathsf{abl}(\mathcal{C}_{\kappa})\}$$

On the other hand, if C is a convex corner, we can obtain a positive definite monotone gauge whose unit convex corner is C by taking the restriction of the Minkowski functional γ_C to ℝ^V₊, and similarly the dual norm w.r.t. C will induce a positive definite monotone gauge whose unit convex corner is abl(C).

Recall the definitions of the following sets:

$$\begin{aligned} \mathsf{STAB}(G) &:= \mathsf{conv}(\{\mathbf{1}_S \in \mathbb{R}^V | S \text{ is a coclique of } G\}) \\ \mathsf{QSTAB}(G) &:= \{x \in \mathbb{R}^V_+ | \mathbf{1}^T_K x \leq 1, \text{for every clique } K \text{ of } G\} \end{aligned}$$

We then define the parameters:

$$\alpha(G, w) = \max\{w^T x | x \in \mathsf{STAB}(G)\}$$

$$\chi_f(G, w) = \max\{w^T x | x \in \mathsf{QSTAB}(\overline{G})\}$$

where α is the weighted maximum stable set of G, and χ_f is the weighted fractional chromatic number of G.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

It can be shown that:

 α(G, w), χ_f(G, w) are a dual pair of positive definite monotone gauges, that is, α(G, w)° = χ_f(G, w) and χ_f(G, w)° = α(G, w), and also:

$$abl(QSTAB(\overline{G})) = STAB(G)$$

 $abl(STAB(G)) = QSTAB(\overline{G})$

The unit convex corner of α(G, w) is QSTAB(G), and similarly the unit convex corner of χ_f(G, w) is STAB(G).

Maxcut and Fractional cut-cover

Let G = (V, E) be a simple graph. Then:

- For every S ⊆ V, we denote by δ(S) ⊆ E as the cut induced by S, i.e., the set of all edges in G with precisely one endpoint in S;
- If w ∈ ℝ^E₊ is a vector with edge-weights, we define the maximum cut of G w.r.t. w as

$$\mathsf{mc}(G, w) := \mathsf{max}\{w^T \mathbf{1}_{\delta(S)} | S \subseteq V\}$$

and we similarly define the **fractional cut-cover** of G w.r.t $z \in \mathbb{R}_+^E$ as

$$\mathsf{fcc}(G, z) := \min\{\mathbf{1}^{\mathcal{T}} y | y \in \mathbb{R}^{\mathcal{P}(V)}_+, \sum_{S \subseteq V} y_S \mathbf{1}_{\delta(S)} \geq z\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recall the Goemanns-Williamson SDP for approximating mc(G, w):

$$egin{aligned} &\eta(G,w) := \max\{\langle rac{\mathcal{L}(w)}{4},X
angle | X \succcurlyeq 0, \operatorname{diag}(X) = \mathbf{1} \} \ &= \min\{\mathbf{1}^{\mathcal{T}}x | x \in \mathbb{R}^{\mathcal{V}}, \operatorname{Diag}(x) \succcurlyeq rac{\mathcal{L}(w)}{4} \} \end{aligned}$$

We know that

$$\alpha_{GW}\eta(G,w) \leq \mathrm{mc}(G,w) \leq \eta(G,w)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where $\alpha_{GW} \approx 0.878$.

We can define the following SDP:

$$\begin{split} \eta^{\circ}(G,z) &:= \min\{\mu | \mu \in \mathbb{R}_{+}, Y \succcurlyeq 0, \operatorname{diag}(Y) = \mu \mathbf{1}, \frac{\mathcal{L}^{*}(Y)}{4} \ge z\} \\ &= \max\{w^{\mathsf{T}}z | w \in \mathbb{R}_{+}^{\mathsf{E}}, x \in \mathbb{R}^{\mathsf{V}}, \operatorname{Diag}(x) \succcurlyeq \frac{\mathcal{L}(w)}{4}, \mathbf{1}^{\mathsf{T}}x \le 1\} \end{split}$$

It can be shown that:

$$\eta^{\circ}(G, z) \leq \mathsf{fcc}(G, z) \leq \frac{1}{lpha_{GW}} \eta^{\circ}(G, z)$$

where $1/\alpha_{GW} \approx 1.138$. Our goal now is to show that mc(G, w) and fcc(G, z) are a pair o dual positive definite monotone gauges, and also to show that the same is true for $\eta(G, w)$ and $\eta^{\circ}(G, z)$.

Proposition 6

If G = (V, E) is a graph, then the functions mc(G, w) and fcc(G, z) satisfy:

$$\begin{split} \mathsf{mc}(G,w) &= \mathsf{max}\{w^{\mathsf{T}}z | z \in \mathbb{R}^{\mathsf{E}}_+, \mathsf{fcc}(G,z) \leq 1\} \\ \mathsf{fcc}(G,z) &= \mathsf{max}\{z^{\mathsf{T}}w | w \in \mathbb{R}^{\mathsf{E}}_+, \mathsf{mc}(G,w) \leq 1\} \end{split}$$

Moreover, the functions $\eta(G, w)$ and $\eta^{\circ}(G, z)$ satisfy:

$$\eta(G, w) = \max\{w^{\mathsf{T}}z | z \in \mathbb{R}^{\mathsf{E}}_{+}, \eta^{\circ}(G, z) \leq 1\}$$
$$\eta^{\circ}(G, z) = \max\{z^{\mathsf{T}}w | w \in \mathbb{R}^{\mathsf{E}}_{+}, \eta(G, w) \leq 1\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

From the previous result, it follows that the functions mc(G, w) and $\eta(G, w)$ are positive definite monotone gauges, and their respective gauge duals are fcc(G, z) and $\eta^{\circ}(G, z)$. Define:

$$\mathsf{CUT}(G) := \mathsf{conv}(\{\mathbf{1}_{\delta(S)|S \subseteq V}\}) \subseteq \mathbb{R}^{E}_{+}$$

 $\mathsf{CUT}_{\mathsf{SDP}}(G) := \{\frac{\mathcal{L}^{*}(Y)}{4} | Y \succcurlyeq 0, \mathsf{diag}(Y) = \mathbf{1}\} \subseteq \mathbb{R}^{E}_{+}$

Both sets are convex, compact and with non-empty interior. They are not, however, lower-comprehensive, and so we consider the sets $lc(CUT(G)), lc(CUT_{SDP}(G))$.

During the proof of the previous proposition, we've implicitly shown that

$$\begin{aligned} z \in \mathsf{lc}(\mathsf{CUT}(G)) & \Longleftrightarrow \mathsf{fcc}(G, z) \leq 1 \\ w \in \mathsf{abl}(\mathsf{CUT}(G)) & \Longleftrightarrow \mathsf{mc}(G, w) \leq 1 \\ z \in \mathsf{lc}(\mathsf{CUT}_{\mathsf{SDP}}(G)) & \Longleftrightarrow \eta^{\circ}(G, z) \leq 1 \\ w \in \mathsf{abl}(\mathsf{CUT}_{\mathsf{SDP}}(G)) & \Longleftrightarrow \eta(G, w) \leq 1 \end{aligned}$$

Hence the unit convex corners are

$$\mathcal{C}_{\mathsf{fcc}} = \mathsf{lc}(\mathsf{CUT}(G)) \text{ and } \mathcal{C}_{\mathsf{mc}} = \mathsf{abl}(\mathsf{CUT}(G))$$

 $\mathcal{C}_{\eta^{\circ}} = \mathsf{lc}(\mathsf{CUT}_{\mathsf{SDP}}(G)) \text{ and } \mathcal{C}_{\eta} = \mathsf{abl}(\mathsf{CUT}_{\mathsf{SDP}}(G))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We can then finally conclude that:

$$mc(G, w) = max\{w^{T}z|z \in lc(CUT(G))\}$$

$$fcc(G, z) = max\{z^{T}w|w \in abl(CUT(G))\}$$

$$\eta(G, w) = max\{w^{T}z|z \in lc(CUT_{SDP}(G))\}$$

$$\eta^{\circ}(G, z) = max\{z^{T}w|w \in abl(CUT_{SDP}(G))\}$$

(ロ)、(型)、(E)、(E)、 E) のQ(()

There are numerous other interesting results related to mc(G, w), fcc(G, z), $\eta(G, w)$, $\eta^{\circ}(G, z)$:

- The authors of [1] show how to extend the Goemans-Williamson algorithm for computing fcc(G,z);
- It can be shown that if G is edge-transitive, then mc(G, 1)fcc(G, 1) = m;
- It can also be shown that if G belongs to a coherent algebra that contains A(G) in its Schur basis, then

$$\eta(G,\mathbf{1})\eta^{\circ}(G,\mathbf{1})=m$$

e.g., in the case of distance-regular and edge-transitive graphs (and I'm 99% sure this is also true for 1-walk-regular graphs).

- N. B. Proença, M. K. de Carli Silva, C. M. Sato, and
 L. Tunçel, A primal-dual extension of the goemans-williamson algorithm for the weighted fractional cut-covering problem, 2023. arXiv: 2311.15346 [math.OC]. [Online]. Available: https://arxiv.org/abs/2311.15346.
- N. B. Proença, M. K. de Carli Silva, and G. Coutinho, Dual hoffman bounds for the stability and chromatic numbers based on sdp, 2020. arXiv: 1910.05586 [math.CO]. [Online]. Available: https://arxiv.org/abs/1910.05586.

Questions?