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Overview

Review of gauge theory

Applying gauge theory to Maxcut



Sign-invariant norms: basic definitions

Let V be a finite set, and let || - || be a norm on RY. Recall the
following definitions:
m B denotes the unit ball associated with || - |;
m ||y||* = maxyep x "y denotes the dual norm of || - ||;
m B° = {y € RY|xTy < 1,Vx € B} denotes the polar ball
w.r.t. B;
® p(x) = inf{u € Ry|x € uB} denotes the Minkowski
functional w.r.t. B.
We say that a norm is sign-invariant if ||x|| = |||x||| for any
x € RY, and we say that a set X C RY is sign-symmetric if
x € X iff |x| € &, similarly for any x € RY.



Sign-invariant norms: construction

Proposition 1 (Constructing a sign-invariant norm)

If B C RY is a sign-symmetric, compact, convex set, with
0 € int(B) and such that B = —B, then:
The Minkowski functional g is a sign-invariant norm with
unit ball given by B;
The dual norm ||y||* = max,ep x "y is a sign-invariant norm
with unit ball given by B°.



Sign-invariant norms: duality

Proposition 2 (Duality of sign-invariant norms)

If || - || is a sign-invariant norm on RY, with unit ball B, then:

B is a sign-symmetric, compact convex set with O in its
interior, and B = —B;

|| - ||* is a sign-invariant norm with unit ball B°;
-1 =1l I, and B*® = B;
For every x,y € RY, we have

xTy < Il - Iyll*
In other words, any sign-invariant norm || - || can be expressed as:

|Ix]| = max{xTyly € B°} = max{x"y|y € RY,||y[|* < 1}



Convex corners and antiblockers

Let X C RK be a subset of the nonnegative orthant, and consider
the following definitions:

m We say that X is lower-comprehensive if for any y € X', and
for any 0 < x <y, we have x € X;

m A convex corner is a lower-comprehensive compact convex
set with nonempty interior that lies in the nonnegative orthant
RV'

+1

m We define the antiblocker of X as
abl(X) ;== A°NRY = {y e RY|x"y <1,vx € X}

We can also define the lower-comprehensive hull Ic(X) of a set
X as the intersection of all lower-comprehensive sets that contain
X.



Gauges: basic definitions

We say that a function & : RK — R is a gauge if:
k is positive semidefinite, that is, x(w) > 0 for every
w € RY, and x(0) = 0;
K is positively homogeneous, that is, k(Aw) = Ax(w) for
every A >0 and w € RY;
k is sublinear, that is, k(w + z) < k(w) + k(z), for every
w,z € R_‘{.

We say that a gauge is positive definite if x(w) > 0 whenever
w € RY and w # 0, and monotone if x(w) < (z) whenever
w < Zz.



Gauges and sign-invariant norms

Let || - || be a sign-invariant norm on RY, and let k be a positive
definite monotone gauge. Then:

the restriction of || - || to RY is a positive definite monotone
gauge;

The function || - ||, that maps x € RY to k(|x|) is a
sign-invariant norm.

Given a sign-invariant norm || - ||, we say that the set C = BNRY
is its unit convex corner. The unit convex corner of a positive
definite monotone gauge is the unit convex corner of the norm

|| - ||« described in the previous Lemma.



Gauges: construction

Theorem 4 (Construction of Gauges)

Let C C RK be a convex corner. Then:
the restriction of the Minkowski functional ¢ to RK is a
positive definite monotone gauge with unit convex corner C;

The restriction of the dual norm ||y||* = maxxec x Ty to RY
is a positive definite monotone gauge with unit convex corner
abl(C).

If k is a positive definite monotone gauge, then the dual gauge x°

is given by

k°(z) = max{w " zlw e RY k(w) < 1}



Gauges: Duality

If Kk is a positive definite monotone gauge, B is the unit ball of the
sign-invariant norm || - ||, and C = BNRY, then:

C is a convex corner;

k° is a positive definite monotone gauge with unit convex
corner abl(C);

k°° = K, and abl(abl(C)) =C;

For every w,z € RY, we have

w'z < k(w)K°(2)



Gauges: Putting it all together

m If K is a positive definite monotone gauge, then the associated

unit convex corner is C,, = {w € RY |s(w) < 1}. If || - ||, is
the induced sign-invariant norm, its unit ball is B s.t.
C. =BNRY. The dual norm || - ||% is also sign-invariant, and

has unit ball given by the polar B°. Its restriction to RK
induces the dual positive definite monotone gauge k°, with
unit convex corner given by B° NRY = abl(C,). By gauge
duality, we obtain:

r(w) = max{z"w|z € Ceo } = max{z" w|z € abl(C,)}

m On the other hand, if C is a convex corner, we can obtain a
positive definite monotone gauge whose unit convex corner is
C by taking the restriction of the Minkowski functional 7¢ to
RK, and similarly the dual norm w.r.t. C will induce a positive
definite monotone gauge whose unit convex corner is abl(C).



Gauge duality: familiar example

Recall the definitions of the following sets:

STAB(G) := conv({1s € RY|S is a coclique of G})
QSTAB(G) := {x € RY|1/x < 1,for every clique K of G}

We then define the parameters:

(G, w) = max{w' x|x € STAB(G)}
xr(G,w) = max{w ' x|x € QSTAB(G)}

where « is the weighted maximum stable set of G, and xr is the
weighted fractional chromatic number of G.



Gauge duality: familiar example

It can be shown that:
m a(G,w), xr(G,w) are a dual pair of positive definite
monotone gauges, that is, a(G, w)° = x¢(G,w) and
xf(G,w)°® = a(G,w), and also:

abl(QSTAB(G)) = STAB(G)
abl(STAB(G)) = QSTAB(G)

m The unit convex corner of (G, w) is QSTAB(G), and
similarly the unit convex corner of x¢(G,w) is STAB(G).



Maxcut and Fractional cut-cover

Let G = (V, E) be a simple graph. Then:

m For every S C V, we denote by §(S) C E as the cut induced
by S, i.e., the set of all edges in G with precisely one endpoint
inS;

mlifwe R_’:; is a vector with edge-weights, we define the
maximum cut of G w.r.t. w as

mc(G,w) = max{WT15(5)|S c Vi

and we similarly define the fractional cut-cover of G w.r.t
z € ]Ri as

fce(G,z) == min{1Ty|y € RE(V), Z yslss) > z}
SCv



Recall the Goemanns-Williamson SDP for approximating mc(G, w):

n(G,w) = max{<£(4W),X)|X = 0,diag(X) =1}
= min{17x|x € RY, Diag(x) = £(4W)}

We know that
aGWn(G7 W) < mC(Gv W) < n(Gv W)

where agy ~ 0.878.



SDPs

We can define the following SDP:

£x(Y)
4

>z}
= max{w'zlw € RE,x € RY, Diag(x) = L(4W), 1"x <1}

UO(G’Z) = mm{lu’|:u’ € R+7 Y s O,dlag(Y) = :U’la

It can be shown that:
1
WO(GJ) S fCC(G7Z) S 7770(G7Z)
aGw

where 1/agw =~ 1.138. Our goal now is to show that mc(G, w)
and fcc(G, z) are a pair o dual positive definite monotone gauges,
and also to show that the same is true for n(G, w) and n°(G, z).



Applying gauge duality

Proposition 6

If G =(V,E) is a graph, then the functions mc(G, w) and
fce(G, z) satisfy:

mc(G, w) = max{w z|z € RE  fec(G,z) < 1}
fcc(G,z) = max{z"w|w € R, mc(G,w) < 1}

Moreover, the functions 7(G, w) and 1°(G, z) satisfy:

n(G,w) = max{w'z|z € RE 7°(G,z) < 1}
n°(G,z) = max{z" wjw € RE 7(G,w) < 1}



Finding the convex corners

From the previous result, it follows that the functions mc(G, w)
and 1(G, w) are positive definite monotone gauges, and their
respective gauge duals are fcc(G, z) and n°(G, z). Define:

CUT(G) = conv({15s)scv}) € RE
5*(Y)

CUTspp(G) == { |Y = 0,diag(Y) = 1} C R}
Both sets are convex, compact and with non-empty interior. They
are not, however, lower-comprehensive, and so we consider the sets

Ic(CUT(G)), Ic(CUTspp(G)).



Finding the convex corners

During the proof of the previous proposition, we've implicitly
shown that
z € Ic(CUT(G)) <= fcc(G,z) <1
w € abl(CUT(G)) <= mc(G,w) <1
z € lc(CUTspp(G)) < n°(G,z) <1
w € abl(CUTspp(G)) <= n(G,w) <1

Hence the unit convex corners are

Ctcc = Ic(CUT(G)) and Cmc = abl(CUT(G))
Cno = |C(CUT5DP(G)) and Cﬁ = ab|(CUT5DP(G))



Putting it all together

We can then finally conclude that:

mc(G, w) = max{w ' z|z € Ic(CUT(G))}
fce(G,z) = max{z” w|w € abl(CUT(G))}
n(G,w) = max{w' z|z € Ic(CUTspp(G))}
n°(G, z) = max{z" w|w € abl(CUTspp(G))}



Concluding thoughts

There are numerous other interesting results related to
mc(G, w), fce(G, z),n(G, w),n°(G, z):
m The authors of [1] show how to extend the
Goemans-Williamson algorithm for computing fcc(G, z);
m It can be shown that if G is edge-transitive, then
mc(G, 1)fcc(G,1) = m;
m It can also be shown that if G belongs to a coherent algebra
that contains A(G) in its Schur basis, then

77(G7 l)nO(Gﬂ 1) =m

e.g., in the case of distance-regular and edge-transitive graphs
(and I'm 99% sure this is also true for 1-walk-regular graphs).
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