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Overview

1 Review of gauge theory

2 Applying gauge theory to Maxcut



Sign-invariant norms: basic definitions

Let V be a finite set, and let || · || be a norm on RV . Recall the
following definitions:

B denotes the unit ball associated with || · ||;
||y ||∗ = maxx∈B x

T y denotes the dual norm of || · ||;
B◦ = {y ∈ RV |xT y ≤ 1,∀x ∈ B} denotes the polar ball
w.r.t. B;
γB(x) = inf{µ ∈ R+|x ∈ µB} denotes the Minkowski
functional w.r.t. B.

We say that a norm is sign-invariant if ||x || = |||x ||| for any
x ∈ RV , and we say that a set X ⊆ RV is sign-symmetric if
x ∈ X iff |x | ∈ X , similarly for any x ∈ RV .



Sign-invariant norms: construction

Proposition 1 (Constructing a sign-invariant norm)

If B ⊆ RV is a sign-symmetric, compact, convex set, with
0 ∈ int(B) and such that B = −B, then:

1 The Minkowski functional γB is a sign-invariant norm with
unit ball given by B;

2 The dual norm ||y ||∗ = maxx∈B x
T y is a sign-invariant norm

with unit ball given by B◦.



Sign-invariant norms: duality

Proposition 2 (Duality of sign-invariant norms)

If || · || is a sign-invariant norm on RV , with unit ball B, then:
1 B is a sign-symmetric, compact convex set with 0 in its

interior, and B = −B;
2 || · ||∗ is a sign-invariant norm with unit ball B◦;

3 || · ||∗∗ = || · ||, and B◦◦ = B;
4 For every x , y ∈ RV , we have

xT y ≤ ||x || · ||y ||∗

In other words, any sign-invariant norm || · || can be expressed as:

||x || = max{xT y |y ∈ B◦} = max{xT y |y ∈ RV , ||y ||∗ ≤ 1}



Convex corners and antiblockers

Let X ⊆ RV
+ be a subset of the nonnegative orthant, and consider

the following definitions:

We say that X is lower-comprehensive if for any y ∈ X , and
for any 0 ≤ x ≤ y , we have x ∈ X ;

A convex corner is a lower-comprehensive compact convex
set with nonempty interior that lies in the nonnegative orthant
RV
+;

We define the antiblocker of X as

abl(X ) := X ◦ ∩ RV
+ = {y ∈ RV

+|xT y ≤ 1,∀x ∈ X}

We can also define the lower-comprehensive hull lc(X ) of a set
X as the intersection of all lower-comprehensive sets that contain
X .



Gauges: basic definitions

We say that a function κ : RV
+ 7→ R is a gauge if:

1 κ is positive semidefinite, that is, κ(w) ≥ 0 for every
w ∈ RV

+, and κ(0) = 0;

2 κ is positively homogeneous, that is, κ(λw) = λκ(w) for
every λ > 0 and w ∈ RV

+;

3 κ is sublinear, that is, κ(w + z) ≤ κ(w) + κ(z), for every
w , z ∈ RV

+.

We say that a gauge is positive definite if κ(w) > 0 whenever
w ∈ RV

+ and w ̸= 0, and monotone if κ(w) ≤ κ(z) whenever
w ≤ z .



Gauges and sign-invariant norms

Lemma 3

Let || · || be a sign-invariant norm on RV , and let κ be a positive
definite monotone gauge. Then:

1 the restriction of || · || to RV
+ is a positive definite monotone

gauge;

2 The function || · ||κ that maps x ∈ RV to κ(|x |) is a
sign-invariant norm.

Given a sign-invariant norm || · ||, we say that the set C = B ∩ RV
+

is its unit convex corner. The unit convex corner of a positive
definite monotone gauge is the unit convex corner of the norm
|| · ||κ described in the previous Lemma.



Gauges: construction

Theorem 4 (Construction of Gauges)

Let C ⊆ RV
+ be a convex corner. Then:

1 the restriction of the Minkowski functional γC to RV
+ is a

positive definite monotone gauge with unit convex corner C;
2 The restriction of the dual norm ||y ||∗ = maxx∈C x

T y to RV
+

is a positive definite monotone gauge with unit convex corner
abl(C).

If κ is a positive definite monotone gauge, then the dual gauge κ◦

is given by

κ◦(z) = max{wT z |w ∈ RV
+, κ(w) ≤ 1}



Gauges: Duality

Theorem 5

If κ is a positive definite monotone gauge, B is the unit ball of the
sign-invariant norm || · ||κ, and C = B ∩ RV

+, then:

1 C is a convex corner;

2 κ◦ is a positive definite monotone gauge with unit convex
corner abl(C);

3 κ◦◦ = κ, and abl(abl(C)) = C;
4 For every w , z ∈ RV

+, we have

wT z ≤ κ(w)κ◦(z)



Gauges: Putting it all together

If κ is a positive definite monotone gauge, then the associated
unit convex corner is Cκ = {w ∈ RV

+|κ(w) ≤ 1}. If || · ||κ is
the induced sign-invariant norm, its unit ball is B s.t.
Cκ = B ∩ RV

+. The dual norm || · ||∗κ is also sign-invariant, and
has unit ball given by the polar B◦. Its restriction to RV

+

induces the dual positive definite monotone gauge κ◦, with
unit convex corner given by B◦ ∩ RV

+ = abl(Cκ). By gauge
duality, we obtain:

κ(w) = max{zTw |z ∈ Cκ◦} = max{zTw |z ∈ abl(Cκ)}

On the other hand, if C is a convex corner, we can obtain a
positive definite monotone gauge whose unit convex corner is
C by taking the restriction of the Minkowski functional γC to
RV
+, and similarly the dual norm w.r.t. C will induce a positive

definite monotone gauge whose unit convex corner is abl(C).



Gauge duality: familiar example

Recall the definitions of the following sets:

STAB(G ) := conv({1S ∈ RV |S is a coclique of G})
QSTAB(G ) := {x ∈ RV

+|1TKx ≤ 1, for every clique K of G}

We then define the parameters:

α(G ,w) = max{wT x |x ∈ STAB(G )}
χf (G ,w) = max{wT x |x ∈ QSTAB(G )}

where α is the weighted maximum stable set of G , and χf is the
weighted fractional chromatic number of G .



Gauge duality: familiar example

It can be shown that:

α(G ,w), χf (G ,w) are a dual pair of positive definite
monotone gauges, that is, α(G ,w)◦ = χf (G ,w) and
χf (G ,w)◦ = α(G ,w), and also:

abl(QSTAB(G )) = STAB(G )

abl(STAB(G )) = QSTAB(G )

The unit convex corner of α(G ,w) is QSTAB(G ), and
similarly the unit convex corner of χf (G ,w) is STAB(G ).



Maxcut and Fractional cut-cover

Let G = (V ,E ) be a simple graph. Then:

For every S ⊆ V , we denote by δ(S) ⊆ E as the cut induced
by S , i.e., the set of all edges in G with precisely one endpoint
in S ;

If w ∈ RE
+ is a vector with edge-weights, we define the

maximum cut of G w.r.t. w as

mc(G ,w) := max{wT1δ(S)|S ⊆ V }

and we similarly define the fractional cut-cover of G w.r.t
z ∈ RE

+ as

fcc(G , z) := min{1T y |y ∈ RP(V )
+ ,

∑
S⊆V

yS1δ(S) ≥ z}



SDPs

Recall the Goemanns-Williamson SDP for approximating mc(G ,w):

η(G ,w) := max{⟨L(w)

4
,X ⟩|X ≽ 0, diag(X ) = 1}

= min{1T x |x ∈ RV ,Diag(x) ≽
L(w)

4
}

We know that

αGW η(G ,w) ≤ mc(G ,w) ≤ η(G ,w)

where αGW ≈ 0.878.



SDPs

We can define the following SDP:

η◦(G , z) := min{µ|µ ∈ R+,Y ≽ 0, diag(Y ) = µ1,
L∗(Y )

4
≥ z}

= max{wT z |w ∈ RE
+, x ∈ RV ,Diag(x) ≽

L(w)

4
, 1T x ≤ 1}

It can be shown that:

η◦(G , z) ≤ fcc(G , z) ≤ 1

αGW
η◦(G , z)

where 1/αGW ≈ 1.138. Our goal now is to show that mc(G ,w)
and fcc(G , z) are a pair o dual positive definite monotone gauges,
and also to show that the same is true for η(G ,w) and η◦(G , z).



Applying gauge duality

Proposition 6

If G = (V ,E ) is a graph, then the functions mc(G ,w) and
fcc(G , z) satisfy:

mc(G ,w) = max{wT z |z ∈ RE
+, fcc(G , z) ≤ 1}

fcc(G , z) = max{zTw |w ∈ RE
+,mc(G ,w) ≤ 1}

Moreover, the functions η(G ,w) and η◦(G , z) satisfy:

η(G ,w) = max{wT z |z ∈ RE
+, η

◦(G , z) ≤ 1}
η◦(G , z) = max{zTw |w ∈ RE

+, η(G ,w) ≤ 1}



Finding the convex corners

From the previous result, it follows that the functions mc(G ,w)
and η(G ,w) are positive definite monotone gauges, and their
respective gauge duals are fcc(G , z) and η◦(G , z). Define:

CUT(G ) := conv({1δ(S)|S⊆V }) ⊆ RE
+

CUTSDP(G ) := {L
∗(Y )

4
|Y ≽ 0, diag(Y ) = 1} ⊆ RE

+

Both sets are convex, compact and with non-empty interior. They
are not, however, lower-comprehensive, and so we consider the sets
lc(CUT(G )), lc(CUTSDP(G )).



Finding the convex corners

During the proof of the previous proposition, we’ve implicitly
shown that

z ∈ lc(CUT(G )) ⇐⇒ fcc(G , z) ≤ 1

w ∈ abl(CUT(G )) ⇐⇒ mc(G ,w) ≤ 1

z ∈ lc(CUTSDP(G )) ⇐⇒ η◦(G , z) ≤ 1

w ∈ abl(CUTSDP(G )) ⇐⇒ η(G ,w) ≤ 1

Hence the unit convex corners are

Cfcc = lc(CUT(G )) and Cmc = abl(CUT(G ))

Cη◦ = lc(CUTSDP(G )) and Cη = abl(CUTSDP(G ))



Putting it all together

We can then finally conclude that:

mc(G ,w) = max{wT z |z ∈ lc(CUT(G ))}
fcc(G , z) = max{zTw |w ∈ abl(CUT(G ))}
η(G ,w) = max{wT z |z ∈ lc(CUTSDP(G ))}
η◦(G , z) = max{zTw |w ∈ abl(CUTSDP(G ))}



Concluding thoughts

There are numerous other interesting results related to
mc(G ,w), fcc(G , z), η(G ,w), η◦(G , z):

The authors of [1] show how to extend the
Goemans-Williamson algorithm for computing fcc(G , z);

It can be shown that if G is edge-transitive, then
mc(G , 1)fcc(G , 1) = m;

It can also be shown that if G belongs to a coherent algebra
that contains A(G ) in its Schur basis, then

η(G , 1)η◦(G , 1) = m

e.g., in the case of distance-regular and edge-transitive graphs
(and I’m 99% sure this is also true for 1-walk-regular graphs).
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Questions?
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