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m Let G = (V, E) be a simple, undirected, loopless graph with
adjacency matrix A.

m MAXCUT problem: partition V into two sets in order to
maximize the number of edges between them.

m We can write this as the following quadratic program:
1 T v o2
mc(G) := max Z<L’XX yixeRY, xf=1p,

where:
L is the laplacian of G;
(A, B) = tr(ABT);
RY is the set of |V| = n dimensional real-vectors indexed by V.
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m MAXCUT is among Karp's original NP-hard problems, so a
reasonable ideia is to try and approximate it by relaxing the
aforementioned equation.

m Any feasible x for the program can be associated with the
matrix X = xx ', which has some important properties:

X is positive semidefinite
As x? = 1, we have diag(X) =1
X has rank 1

m Hence we obtain:

mc(G) = max{i(L,X} s diag(X) =1, X = 0,rk(X) = 1}.

m The last constraint is the problematic one.
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Approximating MAXCUT via SDPs

m By removing the last constraint, we get:

n(G) = max{i(L, M) : M = 0,diag(M) = ]l}

m Goemans and Williamson [GW95] proved that:
agwn(G) < me(G) < 7(G),

where agw = 0.878. This factor is optimal assuming the UGC
and P #£ NP.
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Duality

m A problem dual to MAXCUT is the Fractional cut-cover
(FCC) problem:

fce(G) :=mind{ 1Ty :y e Rﬁ(v), Z ys-Lssy =15, (1)
scv
where:
P(V) is the power set of V;
§(S) is the set of edges with one end in S and the other in
V\S;
15(s) is the indicator vector of 4(S).
m The corresponding dual program to n(G) is:

n°(G) := min{p: u >0, N 3= 0,diag(N) = p-1,(1/4)-L*(N) > 1}.

m [BPdCSST25] show how to use 1°(G) to obtain a 1/agw
approximation algorithm for FCC.
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m Given a set of 01-matrices C = {Ay, ..., Ag} with size n x n,
we say that it is a coherent configuration if:

>-;Ai = J, where J denotes the matrix with all entries equal
to one;

If A; € C, then A,-T eC;

If A; € C and A; has a nonzero diagonal entry, then it is a
diagonal matrix;

B There are nonnegative integers p}j such that

d
AiA; = ZP,IJ “Al,
=0

for any indices 0 < /,j < d.

m If | € C and each A; is symmetric, we say that C is an
association scheme.
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Algebras and projections

m Condition (4) is equivalent to requiring that
M = spang(Ao, ..., Aq) is an algebra over C. In the case of
association schemes, this will be a commutative *x-algebra,
and hence diagonalizable.

m [BGSV12] shows that if M is a PSD matrix, then its
orthogonal projection M’ onto a *-algebra is also PSD.

m This allows us to project the feasible region of certain SDPs

onto the x-algebras associated with highly regular graphs,
which allows for the use of many powerful algebraic tools.
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General strategy

m If we restrict ourselves to graphs whose adjacency matrices
belong to certain x-algebras (e.g. distance-regular graphs), we
can easily show that the optimal solutions for the parameters
1(G),n°(G) lie in these algebras.

m [GR99] noted that in the case of association schemes, this

allowed us to transform the underlying SDP into an LP by
means of a common eigenbasis for all matrices of the algebra.

m [BGSV12] strengthened this method, showing how to explore
symmetry and regularity in certain algebras in order to reduce
the complexity of certain SDPs.



Theorem 1 (H. Assumpgdo, G. Coutinho)

If G is a k-regular graph and whose adjacency matrix A belongs to
an association scheme, and if Apmin(A) is its smallest eigenvalue,

then
2k

1°(6) = A o (A)

In particular, we have

2k 1 2k
— < fee(G) < .
k — )\min(A) - ( ) T oagw (k - )\min(A)>
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ap(G1, G2) = max{<L2 K,XXT> ix eRY X = 1}

can be used to model MAX 2-SAT: given a boolean formula
where each clause has precisely two literals, maximize the
number of clauses that can be satisfied by an assignment.

m Similarly to what was done with MAXCUT, we can consider

L+ K

(G, Gy) = max{<2, I\/I> . M 5= 0, diag(M) = 11} ,

and indeed the authors of [GW95] also show how to use this
SDP to approximate MAX 2-SAT.
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Theorem 2 (H. Assumpgdo, G. Coutinho)

If G1, Gy are graphs whose adjacency matrices A1, A> belong to an
association scheme with first eigenmatrix P, then
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This result combined with the approximation algorithm given in
[GW95] provides a spectral bound for MAX 2-SAT in terms of the
eigenvalues of the scheme.
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We can similarly obtain the dual parameter v°( Gy, Gp) to
(G, G2), and we can explicitly compute it in some cases.

Theorem 3 (H. Assumpgdo, G. Coutinho)

Let Gy be a distance-regular graph with diameter d and let G, be
its distance-2 graph, with respective adjacency matrices A; and
Ay. If P is the first eigenmatrix associated with the symmetric
scheme generated by A1, then

ki if koPg1 + kiPg> > 0
) . if koPg1 + kiPa2 > 0,
v°(G1, G2) = { ! ky - (k2Pg1+kiPa2)

=Py~ 2k(ki—Pa) otherwise.
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