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MAXCUT & SDPs



MAXCUT

Let G = (V ,E ) be a simple, undirected, loopless graph with
adjacency matrix A.

MAXCUT problem: partition V into two sets in order to
maximize the number of edges between them.

We can write this as the following quadratic program:

mc(G ) := max

{
1

4
⟨L, xxT ⟩ : x ∈ RV , x2i = 1

}
,

where:

1 L is the laplacian of G ;
2 ⟨A,B⟩ = tr(ABT );
3 RV is the set of |V | = n dimensional real-vectors indexed by V .
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Relaxing MAXCUT

MAXCUT is among Karp’s original NP-hard problems, so a
reasonable ideia is to try and approximate it by relaxing the
aforementioned equation.

Any feasible x for the program can be associated with the
matrix X = xxT , which has some important properties:

1 X is positive semidefinite
2 As x2i = 1, we have diag(X ) = 1

3 X has rank 1

Hence we obtain:

mc(G ) = max

{
1

4
⟨L,X ⟩ : diag(X ) = 1,X ≽ 0, rk(X ) = 1

}
.

The last constraint is the problematic one.
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Approximating MAXCUT via SDPs

By removing the last constraint, we get:

η(G ) := max

{
1

4
⟨L,M⟩ : M ≽ 0, diag(M) = 1

}

Goemans and Williamson [GW95] proved that:

αGWη(G ) ≤ mc(G ) ≤ η(G ),

where αGW ≈ 0.878. This factor is optimal assuming the UGC
and P ̸= NP.
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Duality

A problem dual to MAXCUT is the Fractional cut-cover
(FCC) problem:

fcc(G ) := min

1
T y : y ∈ RP(V )

+ ,
∑
S⊆V

yS · 1δ(S) ≥ 1

 , (1)

where:

1 P(V ) is the power set of V ;
2 δ(S) is the set of edges with one end in S and the other in

V \ S ;
3 1δ(S) is the indicator vector of δ(S).

The corresponding dual program to η(G ) is:

η◦(G ) := min{µ : µ ≥ 0,N ≽ 0, diag(N) = µ·1, (1/4)·L∗(N) ≥ 1}.

[BPdCSST25] show how to use η◦(G ) to obtain a 1/αGW

approximation algorithm for FCC.
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Association Schemes



Schemes and configurations

Given a set of 01-matrices C = {A0, ...,Ad} with size n × n,
we say that it is a coherent configuration if:

1
∑

i Ai = J, where J denotes the matrix with all entries equal
to one;

2 If Ai ∈ C, then AT
i ∈ C;

3 If Ai ∈ C and Ai has a nonzero diagonal entry, then it is a
diagonal matrix;

4 There are nonnegative integers plij such that

AiAj =
d∑

l=0

plij · Al ,

for any indices 0 ≤ i , j ≤ d .

If I ∈ C and each Ai is symmetric, we say that C is an
association scheme.
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Algebras and projections

Condition (4) is equivalent to requiring that
M := spanC(A0, ...,Ad) is an algebra over C. In the case of
association schemes, this will be a commutative ∗-algebra,
and hence diagonalizable.

[BGSV12] shows that if M is a PSD matrix, then its
orthogonal projection M ′ onto a ∗-algebra is also PSD.

This allows us to project the feasible region of certain SDPs
onto the ∗-algebras associated with highly regular graphs,
which allows for the use of many powerful algebraic tools.
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Bounds on FCC and MAX 2-SAT



General strategy

If we restrict ourselves to graphs whose adjacency matrices
belong to certain ∗-algebras (e.g. distance-regular graphs), we
can easily show that the optimal solutions for the parameters
η(G ), η◦(G ) lie in these algebras.

[GR99] noted that in the case of association schemes, this
allowed us to transform the underlying SDP into an LP by
means of a common eigenbasis for all matrices of the algebra.

[BGSV12] strengthened this method, showing how to explore
symmetry and regularity in certain algebras in order to reduce
the complexity of certain SDPs.
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FCC

Theorem 1 (H. Assumpção, G. Coutinho)

If G is a k-regular graph and whose adjacency matrix A belongs to
an association scheme, and if λmin(A) is its smallest eigenvalue,
then

η◦(G ) =
2k

k − λmin(A)
.

In particular, we have

2k

k − λmin(A)
≤ fcc(G ) ≤ 1

αGW

(
2k

k − λmin(A)

)
.



MAX 2-SAT

We now consider two graphs G1,G2, with laplacian and
signless laplacian matrices L,K , respectively. The program

qp(G1,G2) := max

{〈
L+ K

2
, xxT

〉
: x ∈ RV , x2i = 1

}
can be used to model MAX 2-SAT: given a boolean formula
where each clause has precisely two literals, maximize the
number of clauses that can be satisfied by an assignment.

Similarly to what was done with MAXCUT, we can consider

γ(G1,G2) := max

{〈
L+ K

2
,M

〉
: M ≽ 0, diag(M) = 1

}
,

and indeed the authors of [GW95] also show how to use this
SDP to approximate MAX 2-SAT.
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MAX 2-SAT

Theorem 2 (H. Assumpção, G. Coutinho)

If G1,G2 are graphs whose adjacency matrices A1,A2 belong to an
association scheme with first eigenmatrix P, then

γ(G1,G2) =
|V |
2

(
(k1 + k2) + max

0≤l≤d
{Pl2 − Pl1}

)
.

This result combined with the approximation algorithm given in
[GW95] provides a spectral bound for MAX 2-SAT in terms of the
eigenvalues of the scheme.
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MAX 2-SAT

We can similarly obtain the dual parameter γ◦(G1,G2) to
γ(G1,G2), and we can explicitly compute it in some cases.

Theorem 3 (H. Assumpção, G. Coutinho)

Let G1 be a distance-regular graph with diameter d and let G2 be
its distance-2 graph, with respective adjacency matrices A1 and
A2. If P is the first eigenmatrix associated with the symmetric
scheme generated by A1, then

γ◦(G1,G2) =

{
k1

k1−Pd1
, if k2Pd1 + k1Pd2 > 0,

k1
k1−Pd1

− (k2Pd1+k1Pd2)
2k2(k1−Pd1)

, otherwise.
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