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Advanced Topics in Algebraic Graph Theory

1 Distance-regular graphs
Throughout these notes, we let X = (V, E) be a simple undirected loopless graph with n vertices and m
edges, and adjacency matrix A. We let Xi = {(u, v) ∈ V × V |D(u, v) = i} denote the set of all pairs of
vertices at distance i, and if u ∈ V , then Xi(u) = {v ∈ V |(u, v) ∈ Xi}. We let Ai be the adjacency matrix of
Xi, that is, the distance-i matrix of X.

Definition 1. We say that a connected regular graph X with diameter d and degree k is distance-regular if
there are constants pl

ij , for all i, j, l ∈ {0, 1, ..., d}, such that for any pair of vertices u, v at distance l from
one another, the number of vertices w at distance i from u and j from l equals pl

ij . In other words, for any
u, v ∈ V such that D(u, v) = l, then

|Xi(u) ∩ Xj(v)| = pl
ij .

More concretely, for any i, j ∈ {0, 1, ..., d}, we have

AiAj =
d∑

k=0
pl

ijAl.

We note that since the graph is assumed to be undirected, it follows that pl
ij = pl

ji. We also note that p0
ij = 0

if i ̸= j, pl
0j = 0 if j ≠ l, and pj

0j = 1 for all j. We denote by kl = p0
ll as the degree of l-distance graph of

X. We also note that pi
j1 = 0 if i ̸= 0 and j /∈ {i − 1, i, i + 1}, and we denote by ci = pi

(i−1)1, bi = pi
(i+1)1.

It will be useful to let c0 = bd = 0,A−1 = Ad+1 = 0, and to let cd+1, b−1 be undefined, and we note that
b0 = k, c1 = 1. If we fix a vertex v ∈ V , there are exactly ki vertices at distance i from v, and each of these
vertices has bi neighbors at distance i + 1 from v, hence there are kibi edges from Xi(v) to Xi+1(v). On the
other hand, there are ki+1 vertices in Xi+1(v), each with ci+1 neighbors in Xi(v), thus we obtain that

ki+1 = kibi

ci+1
,

and it also follows that |V | = 1 + k1 + ... + kd. We can also count triples of vertices in X to obtain certain
equalities. Let u, v, w ∈ V such that D(u, v) = l, D(u, w) = i, D(w, v) = j, then

klp
l
ij = kip

i
jl = kjpj

il.

From these definitions, we can prove our first result.

Theorem 2. If X is a connected k-regular graph with diameter d, and if there are integers ki, bi, ci such that
for any vertex v ∈ V (X) we have

|Xi(v)| = ki,

and for any u ∈ V (X) at distance i from v,

|X1(u) ∩ Xi−1(v)| = ci

|X1(u) ∩ Xi+1(v)| = bi,

then X is distance-regular.

Proof. As the set {I, A, A2, ..., Ad} is a symmetric-closed set that contains I, it suffices to show that
AiAj ∈ span({I, A, A2, ..., Ad}) for any pair i, j. We first note that, if i ∈ {0, ..., d}, and letting ai = k−bi −ci,
then from the assumptions it follows that

(AAi)uv = |X1(u) ∩ Xi(v)| =


bi−1, if u ∈ Xi−1(v)
ai, if u ∈ Xi(v)
ci+1, if u ∈ Xi+1(v),
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thus
AAi = bi−1Ai−1 + aiAi + ci+1Ai+1

We can apply induction on i to show that Ai is always a polynomial in A of degree i, and also that
Ai ∈ span({I, A, A2, ..., Ai}). Indeed, the cases for i = 0 or i = 1 are immediate, and if i = 2 we have

A2 = b0I + a1A + c2A2,

hence A2 is a linear combination of I, A, A2, and since c2 ̸= 0, we have that A2 is a polynomial ν2(A) of
degree 2 in A given by

c2A2 = c2ν2(A) = A2 − a1A − b0I.

If the result holds for i, then it clearly follows that

ci+1Ai+1 = ci+1νi+1(A) = Aνi(A) − aiνi(A) − bi−1νi−1(A),

hence Ai+1 is a polynomial of degree i + 1 in A. Now let Ai =
∑i

l=0 αlAl, hence

Ai+1 =
i∑

l=0
αlAlA,

and using that AlA is a linear combination of Al−1, Al, Al+1, it follows that Ai+1 is in span({I, A, A2, ..., Ai+1}),
which concludes the induction. This shows that AiAj is a polynomial in A, and since

AAd = bd−1Ad−1 + adAd,

it follows that this polynomial has degree at most d, hence AiAj ∈ span({I, A, A2, ..., Ad}), as desired. ■

The polynomials defined in the previous result can be recursively defined by

ν−1(x) = 0, ν0(x) = 1, ν1(x) = x,

ci+1νi+1(x) = (x − ai)νi(x) − bi−1νi−1(x).

The previous result shows that a distance-regular graph X is completely determined by the parameters
k, bi, ci, and we define the intersection array of X as

ι(X) := {b0, b1, ..., bd−1; c1, ..., cd}.

The Petersen graph has intersection array given by {3, 2; 1, 1}, and in fact it is determined by this array
as a DRG, that is, if X is a DRG with ι(X) = {3, 2; 1, 1}, then X must be the Petersen graph. The
smallest intersection array that corresponds to more than one graph is {6, 3; 1, 2}, as both the Hamming
graph H(2, 4) and the Shrikhande graph – constructed as the Cayley graph on Z4 × Z4 with connection set
{±(1, 0), ±(0, 1), ±(1, 1)} – both have this same intersection array. The Shrikhande graph is also the smallest
distance-regular graph that is not distance-transitive.

The coefficients of the intersection array also satisfy some important properties:

Proposition 3. If X is a distance-regular graph with intersection array ι(X), then:

(i) 1 = c1 ≤ c2 ≤ ... ≤ cd;

(ii) bd−1 ≥ ... ≥ b1 ≥ b0 = k;

(iii) if i + j ≤ D, then ci ≤ bj;

(iv) The sequence k0 = 1, k1 = k, ..., kd is unimodal.
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Proof. For (i) and (ii), we consider a pair of vertices u, v at distance i, and a vertex w at distance 1 from u
and i − 1 from v. If z is a neighbor of v at distance i − 2 from w (note that there are precisely ci−1 of these),
then the triples wuz and zuv guarantee that D(z, u) = i − 1, hence z is one of the ci neighbors of v that are
at distance i − 1 from u, implying that ci−1 ≤ ci. Similarly, if we consider a neighbor z of v at distance i + 1
from u (again noting that there are bi of these), then triples uwz, vwz guarantee that D(z, w) = i, hence z is
one of the bi−1 neighbors of v at distance i from w, implying that bi ≤ bi+1.

For (iii), we consider a pair u, v at distance i + j, and a vertex w at distance j from u and i from v. If z
is one of the ci neighbors of w at distance i − 1 from v, then triples uwz, uvz show that D(z, u) = j + 1,
hence z is one of the bj neighbors of w at distance j + 1 from u, implying that ci ≤ bj .

For (iv), it suffices to note that from (i), (ii) it follows that

kiki

ki+1ki−1
= ci+1bi−1

cibi
≥ 1,

hence k2
i ≥ ki+1ki−1, and thus k0, ..., kd is unimodal. ■

If X is an arbitrary graph with diameter d, the adjacency algebra C[A] of A – that is, the algebra of
all polynomials in A – is a commutative ∗-subalgebra of the full matrix algebra Mn(C). The dimension of
this algebra is equal to the number of distinct eigenvalues of A, and since I, A, A2, ..., Ad forms a linearly
independent set in C[A], it follows that A has at least d + 1 distinct eigenvalues. The previous observations
regarding distance-regular graphs allows us to prove the following result:

Proposition 4. Let X be a connected k-regular graph with diameter d. Then C[A] = C[I, A, A2, ..., Ad] if,
and only if, X is distance-regular, and in this case X has exactly d + 1 distinct eigenvalues.

Proof. If X is distance-regular, then the dimension of C[I, A, A2, ..., Ad] is exactly d + 1, and since this
algebra contains C[A] which has dimension at least d + 1, it follows that they are equal. As the dimension of
C[A] is the number of distinct eigenvalues of A, it also follows that this number is d + 1. The other direction
is immediate. ■

We let

L =



0 b0 0 0 . . . 0
c1 a1 b1 0 . . . 0
0 c2 a2 b2 . . . 0
...

... . . . . . . . . . ...
0 0 . . . cd−1 ad−1 bd−1
0 0 . . . 0 cd ad


be the tridiagonal (d + 1) × (d + 1) intersection matrix. It is interesting to observe that this is precisely
the partition matrix w.r.t. the distance partition induced by any fixed vertex v ∈ V (X) – this partition is
equitable, and in fact, a graph is distance-regular iff the distance partition w.r.t. any fixed vertex is equitable.
If we let ∆ = Diag(k0, ..., kd), noting that

bi

√
ki√

ki+1
= ci+1

√
ki+1√

ki
,

we conclude that ∆1/2L∆−1/2 is symmetric, hence L is diagonalizable. We note that if x = (x0, ..., xD) is an
θ-eigenvector of L, then

θxi = cixi−1 + aixi + bixi+1,

where c0 = bd = 0, hence we don’t need to define x−1 and xd+1. Moreover, we note that x0 ̸= 0, since
otherwise x = 0, thus we may always assume that x0 = 1, which in turn implies that x1 = θ/k – this way of
writing x is usually called the standard sequence w.r.t. θ.

We can now prove that L has precisely d + 1 distinct eigenvalues, and that Dspec(A) = Dspec(L).
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Proposition 5. If X is a distance-regular graph with diameter d, then

Dspec(L) = Dspec(A).

Proof. Let x = (1, θ/k, x2, ..., xd) be the standard sequence w.r.t. θ, and fix a node v from X. Define a
n-dimensional vector z by zu = xD(u,v), for all u ∈ X, thus if ai denotes the v-th column of the i-distance
matrix Ai, we have

z =
d∑

i=0
xiai.

We now note that

Az =
d∑

i=0
xiAai

=
d∑

i=0
xi(bi−1ai−1 + aiai + ci+1ai+1)

=
d∑

i=0
(cixi−1 + aixi + bixi+1)ai

= θz,

where the second equality follows from the identity

AAi = bi−1Ai−1 + aiAi + ci+1Ai+1,

and the third equality follows from noting that each entry in aj appears exactly three times in the sum when
i ∈ {j − 1, j, j + 1}. This shows that Dspec(L) ⊆ Dspec(A). Now note that

L − θI =



−θ b0 0 0 . . . 0
c1 a1 − θ b1 0 . . . 0
0 c2 a2 − θ b2 . . . 0
...

... . . . . . . . . . ...
0 0 . . . cd−1 ad−1 − θ bd−1
0 0 . . . 0 cd ad − θ


,

and since the c′
is are all nonzero, it follows that rk(L − θI) ≥ d, thus null(L − θI) ≤ 1, implying that the

eigenspace of each eigenvalue has dimension 1, thus |Dspec(L)| = d + 1, which concludes the proof. ■

We can also compute the multiplicities of each eigenvalue of A from the standard sequences of L.

Theorem 6 (Bigg’s Formula). Let X be a distance-regular graph with diameter d, and let x = (1, θ/k, ..., xd)
be the standard sequence w.r.t. some eigenvalue θ of L. Then the multiplicity m(θ) of θ as an eigenvalue of
A is given by:

m(θ) = n∑d
i=0 x2

i ki

.

Proof. Let E be the projection onto the θ-eigenspace of A, and note that since X is distance-regular,
E ∈ C[I, A, ..., Ad], hence we may write

d∑
i=0

αiAi.
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We note that the diagonal entries of E are thus constant and equal to α0, hence m(θ) = nα0. We also note
that

θE = AE =
d∑

i=0
αiAAi

=
d∑

i=0
αi(bi−1Ai−1 + aiAi + ci+1Ai+1)

=
d∑

i=0
(ciαi−1 + aiαi + biαi+1)Ai.

On the other hand, θE =
∑d

i=0 θαiAi, hence

θαi = ciαi−1 + aiαi + biαi+1,

from which it follows by induction on i that αi = α0xi. From expression of E as a linear combination of the
A′

is we get

E2 =
d∑

l=0

d∑
i=0

d∑
j=0

(αiαjpl
ij)Al,

and noting that p0
ij = 0 if i ≠ j and that p0

ii = ki, we conclude that the diagonal entries of E2 are constant and
equal to

∑d
i=0 α2

i ki. As E2 = E, and since the diagonal entries of E are α0, it follows that α0 =
∑d

i=0 α2
i ki.

Using that αi = α0xi, we get
α0 = 1∑d

i=0 x2
i ki

.

We can thus conclude that
m(θ) = tr(E) = nα0 = n∑d

i=0 x2
i ki

,

as desired. ■

We can also define representations for the vertices of V associated with the eigenvalues θ of A. If
E =

∑l
i=1 yly

T
l is the orthogonal projection onto the θ-eigenspace written in terms of an orthonormal basis

{yi}, where l = m(θ), then we can map each vertex v to Eev. Thus if u, v are vertices of X, then

⟨Eeu, Eev⟩ = Euv = αD(u,v) = α0xD(u,v),

where x is the standard sequence w.r.t. θ. Moreover, the vectors Eev satisfy:

||Eev||2 = ⟨Eev, Eev⟩ = Evv = α0,

hence ||Eev|| = √
α0.

We say that a graph X is imprimitive if Xi is disconnected for some i. Bipartite graphs with diameter at
least 2 are always imprimitive, since A2 is disconnected, and so are antipodal graphs – graphs such that Xd

is a disjoint union of cliques. We then have the following result:

Theorem 7 (Smith’s Theorem). If X is an imprimitive distance-regular graph with degree k > 2, then it is
bipartite or antipodal (or both).

Proof. Let X be as stated with diameter i. We say that a triple of vertices u, v, w ∈ V is of type (l, i, j) if
D(u, v) = l, D(u, w) = i, D(v, w) = j. Note then that if j > 0 and pj

ii > 0, then any pair of vertices adjacent
in Xj have at least one common neighbor in Xi, thus any path in Xj gives rise to a path in Xi, implying
that if Xj is connected then so is Xi. If we choose i to be the minimal index such that Xi is disconnected,
then it follows that if j < i, then pj

ii = 0, i.e., there are no triples of type (j, i, i). Since X is connected by
assumption, then i > 1.
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We first consider the case where i = d. Note that pj
dd = 0 for all j < d, that is, all triples of type (j, d, d)

are forbidden. This means that if D(u, w) = D(u, v) = d, then D(w, v) = d, i.e., Xd is a disjoint union of
cliques, thus X is antipodal.

We now further subdivide the possibilities into two cases:

(i) If 2 = i < d, then we will show that X is bipartite. Indeed, we first consider a triangle wv0v1, and let
v0v1v2v3 be a path of length 3 between vertices v0, v3 at distance 3. If we look at the triple w, v0, v2,
then since D(w, v0) = 1, D(v0, v2) = 2, it follows that D(w, v2) ∈ {1, 2, 3}, however it cannot be 3 since
wv1v2 is a path of length 2 from w to v2, and it cannot be 2 since otherwise the triple would be of type
(1, 2, 2) which is forbidden, thus it must be 1. Now if we look at the triple w, v1, v3, similarly we have
that D(w, v3) ∈ {1, 2, 3}, however it cannot be 3 as wv2v3 is a path of length 2 from w to v3, and it
cannot be 1 since otherwise v0wv3 would be a path of length 2 between v0 and v3, hence D(w, v3) = 2
and wv1v3 is a forbidden triple of type (1, 2, 2). This shows that there are no triangles in X. Now
let C be an odd cycle of length > 3, and note then that all of its vertices lie in the same connected
component ∆ w.r.t. X2. If u, v are adjacent vertices in C and w is adjacent to u, then it cannot be
adjacent to v as there are no triangles, meaning that w, v are adjacent in X2 and thus w belongs to ∆.
We can repeat this for any path connecting a vertex in X to C to conclude that all vertices in the path
must be in ∆, and since X is connected, this implies that X2 is connected, which is a contradiction.
Hence there are no odd cycles and X is bipartite;

(ii) If 2 < i < d, we consider a path of length d between vertices v0, vd at distance d, and note that since
k ≥ 3, we can find a vertex w adjacent to vi that is distinct from vi−1, vi. By looking at the triple
w, v0, vi, we get that D(w, v0) ∈ {i − 1, i, i + 1}). If D(w, v0) = i, then the triple w, vi, v0 is of forbidden
type (1, i, i). If D(w, v0) = i + 1, then the triples w, vi, v1 and w, v1, v0 show that D(w, v1) = i, then
the triple w, vi+1, v1 is of forbidden type (j, i, i) with with j ≤ 2. This implies that any neighbor from
vi other than vi+1 must be at distance i − 1 from v0, hence ci = k − 1 and bi = 1. Now as the graph
is distance-regular, it follows that vi+1 must also have ci neighbors at distance i − 1 from v1, and as
k − 1 ≥ 2, we can find a vertex z adjacent to vi+1 distinct from vi which is at distance i − 1 from v1.
The triples z, v0, v1 and z, v0, vi+1 show that D(z, v0) = i, hence z ≠ w, and the triple z, vi, v0 is of
forbidden type (j, i, i), with j ≤ 2.

The previous cases show that i is either d or 2, which in turn imply that X is either bipartite or antipodal,
as desired. ■

We note that a there are imprimitive distance-regular graphs with degree k = 2 that are not bipartite nor
antipodal, e.g., C9. Also, the complete bipartite graphs Kd,d are examples of imprimitive distance-regular
graphs that are both bipartite and antipodal.

As a final remark, the previous theorem allows us to construct primitive graphs from imprimitive graphs.
If X is an imprimitive bipartite graph with degree at least 3 and partitions V1, V2, then Vi is a connected
component of X2. The graphs induced by the components Vi in X2 are called the halved graphs, and
are denoted by X+, X−. If X is antipodal, then we can obtain a graph X ′ with vertex set given by the
equivalence classes of X0 ∪ Xd such that two classes are adjacent if they contain adjacent vertices in X. This
is called the folded graph of X. It can be shown that both halved and folded graphs of a DRG are also DRGs,
and that after at most two steps of halving and/or folding, we obtain a primitive DRG.

2 Association Schemes
Definition 8. We say that a set S = {A0, ..., Ad} of nonzero n × n matrices with entries in {0, 1} is an
association scheme if the following hold:

(i) A0 = I;

(ii) each Ai is a symmetric matrix;
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(iii)
∑

i Ai = J ;

(iv) there are constants pl
ij such that

AiAj =
d∑

l=0
pl

ijAl.

The span of the matrices in S is denoted by A and is called the Bose-Mesner algebra, and it forms a
commutative ∗-subalgebra of Mn(C) that is also closed under the Schur product. From the previous lecture,
we see that DRGs are precisely the graphs whose distance partition forms an association scheme. Similarly
to the case of DRGs, we can show that for general association schemes, we can also find a basis E0, ..., Ed of
orthogonal projection matrices.

Theorem 9. Let {I, ..., Ad} be an association scheme with Bose-mesner algebra A, then there exists an
orthogonal matrix U such that UT AU is a set of diagonal matrices. In other words, we can find a common
basis of orthogonal eigenvectors for all matrices in A.

Proof. We prove the result via induction on the dimension of A. If d = 1, then we have a basis {I, A1},
and since A1 is symmetric, it follows that any basis of eigenvectors for A1 diagonalizes A. The case where
d = 2 follows similarly, by noting that two symmetric matrices commute iff they share an orthogonal basis
of eigenvectors. For the general case, we note that a set of commuting matrices in Mn(C) always share a
common eigenvector v1, hence we may decompose

Cn = Cv1 ⊕ W,

where W = (Cv1)⊥. As W is invariant w.r.t. all Ai, we may write

Ai =
(

λi 0
0 Ai|W

)
.

The blocks Ai|W will also commute, and thus we may apply induction to conclude the desired result. ■

The previous result shows that we can find orthogonal projectors E0, ..., Ed such that

Cn = E0Cn ⊕ . . . EdCn,

where each subspace EiCn is a subeigenspace of each matrix in A, with dimension mi = tr(Ei). Moreover, if
A ∈ A, we may also write

A =
d∑

i=0
λiEi,

where λi are the eigenvalues of A – not necessarily distinct, although this shows that each matrix in A has at
most d + 1 distinct eigenvalues –, hence AEi = CEi, and we thus obtain the following decomposition for A:

A = AE0 ⊕ . . . ⊕ AEd = CE0 ⊕ . . . ⊕ CEd.

In other words, there are two canonical basis for a given association scheme: (i) its Schur idempotents given
by the symmetric matrices I, A1, ..., Ad, which are orthogonal idempotents w.r.t. the Schur product; and (ii)
its matrix idempotents given by the symmetric matrices E0, ..., Ed, which are orthogonal idempotents w.r.t.
the usual matrix product. Since each Ai can be seen as the adjacency matrix of a ki-regular graph, it follows
that 1 is the unique ki-eigenvector for each Ai, hence we may assume WLOG that E0 = (1/n)J . From these
observations, we can define the eigenmatrix P and dual eigenmatrix Q of the scheme as follows:

Ai =
d∑

j=0
PjiEj ,

Ei = 1
n

d∑
j=0

QjiAj .
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From this, we can see that
AiEj = PjiEj and Ei ◦ Aj = Qji

n
Aj .

The first row of P contains the degrees ki of the scheme, the first row of Q contains the multiplicities mj of
the scheme, and note that the multiplicity of Pji is mj for any i. Moreover, we have

EiEj = (
d∑

l=0

PilQlj

n
)Ei = (PQ)ijEi,

Ai ◦ Aj = (
d∑

l=0

QilPlj

n
)Ai = (QP )ijAi

hence PQ = nI = QP . Noting that tr(AB) = sum(A ◦ B), we can also obtain the relations mjPji = kiQij

for any i, j ∈ {0, ..., d} from the trace of AiEj .
As A is Schur-closed, we can also express Ei ◦ Ej as a linear combination of the Ei’s, that is,

Ei ◦ Ej =
d∑

l=0
ql

ijEl,

where the real numbers ql
ij are called the Krein parameters of the scheme. Noting that both Ei and Ej are

PSD matrices, it follows that Ei ◦ Ej is also PSD, hence the Krein parameters are all nonnegative. From
this, we can obtain the following bound for the multiplicities of the scheme:

Proposition 10. If m0, ...md are the multiplicities of the association scheme {I, A1, ..., Ad}, then

∑
ql

ij ̸=0

ml ≤
{

mimj , if i ̸= j
mi(mi+1)

2 , if i = j

Proof. Let A, B be n × m matrices with rank mA, mB, respectively, and let

A =
mA∑
i=1

viu
∗
i and B =

mB∑
i=1

xiy
∗
i

be their SVD decomposition. Hence

A ◦ B =
∑
i,j

(vi ◦ xj)(ui ◦ yj)∗,

thus A ◦ B is a sum of at most mAmB linearly independent rank 1 matrices, implying that rk(A ◦ B) ≤
rk(A)rk(B). If A = B, then we note that there are at most

(mA+1
2
)

linearly independent rank 1 matrices,
hence rk(A ◦ A) ≤

(rk(A)+1
2

)
. Combining this with the fact that

rk(Ai ◦ Aj) =
∑

ql
ij ̸=0

ml,

we conclude the proof. ■

An association scheme is called P -polynomial if there is an ordering of the Schur basis such that each
Ai is a polynomial in A1 of degree i. Similarly, we call it Q-polynomial if there’s an ordering of the matrix
idempotents such that each Ei is a polynomial (w.r.t. the Schur product) in E1 with degree i.
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3 Coherent Configurations
Definition 11. We say that a set C = {A0, ..., Ad} of nonzero n × n matrices with entries in {0, 1} is a
coherent configuration if the following hold:

(i)
∑

i Ai = J ;

(ii) for each i, AT
i ∈ C;

(iii) for each i, if Ai has a nonzero diagonal entry, then it is a diagonal matrix;

(iv) there are constants pl
ij such that

AiAj =
d∑

l=0
pl

ijAl.

Coherent configurations generalize the notion of association schemes, and as we shall see, they are
especially useful in the context of finite groups. From condition (iii), it follows that there are diagonal
matrices I1, ..., Im in the configuration that partition the identity matrix I, and these are called the fibers of
the configuration. If C contains the identity, that is, has only one fiber, we say that the configuration is
homogeneous. If each element of C is symmetric, we say that the configuration is symmetric.

It also follows from the definition that Ai is either symmetric or anti-symmetric – that is, Ai ◦ AT
i is

either Ai or 0. If i ∈ {0, ..., d}, we denote by i′ the unique matrix in C such that AT
i = Ai, and similarly to

what we did with distance-regular graphs, we let Xi denote the set of pairs related by Ai, and Xi(α) to be
the set of elements in X such that (α, β) ∈ Xi. From this it follows that if (α, β) ∈ Xl, then

(AiAj)αβ = |Xi(α) ∩ Xj′(β)| = pl
ij .

We now turn our attention to the algebras associated with coherent configurations. We say that a subset
A ⊆ Mn(C) is a coherent algebra if:

(i) A closed w.r.t. the conjugate-transpose map;

(ii) A is an algebra w.r.t. the usual matrix product with unit given by I;

(iii) A is an algebra w.r.t. the Schur product with unit given by J ;

It is clear then that the linear span of the matrices in a coherent configuration gives rise to a coherent algebra,
however we can actually prove a one-to-one correspondence.

Proposition 12. If A is a coherent algebra of dimension d, then there is a unique coherent configuration
C = {A0, ..., Ad} such that A = spanC(A0, ..., Ad).

Proof. If A ∈ A, we can write it as a linear combination of orthogonal 01 matrices w.r.t. its Schur product,
and by using Lagrange’s polynomials w.r.t. the Schur product we can see that each of these components
belongs to A. Hence the 01 components of each matrix in A belongs to it, and thus we can consider the
minimal components – that is, that cannot be further decomposed as the sum of two distinct components in
A – and note that these must form a unique basis for A. ■

We note that if Ii, Ij are fibers of C, then IiJIj ∈ A, hence

IiJIj =
∑

l

αlAl,

but since IiJIj is a 01 matrix, it follows that αl ∈ {0, 1}, hence if Al ◦IiJIj ̸= 0, it follows that Al ◦IiJIj = Al.
This shows us that each relation Xi is always contained in the Cartesian product of two fibers of C.

We now turn our attention to permutation groups.
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Example 13. Let G be a permutation group acting on a set X = {1, ..., n}. This action induces an action
on X × X as follows:

σ(α, β) = (σ(α), σ(β)),

for any σ ∈ G, α, β ∈ X. The orbits Orb(G, X × X) = {X0, ..., Xd} on X × X are called the orbitals of G,
and they partition X × X. If Ai is the adjacency matrix of the relation Xi, we claim that C = {A0, ..., Ad}
is a coherent configuration. Indeed, C clearly satisfies (i), and we note that if (α, α), (γ, θ) ∈ Xi, then there
exists some σ ∈ G such that σ(α) = σ(γ) = σ(θ), hence γ = θ, and thus C satisfies (iii). We note that if
(α, β) ∈ Xi, we can then write Xi = G(α, β), hence

(γ, θ) ∈ G(α, β) ⇐⇒ (θ, γ) ∈ G(β, α),

implying that the orbit Xi′ = G(β, α) is the transpose of Xi – that is, Ai′ = AT
i –, and so C also satisfies (ii).

We now note that if γ ∈ Xi(α) then σ(γ) ∈ Xi(σ(α)), and conversely if γ ∈ Xi(σ(α)), then γ ∈ σ(Xi(α)),
hence Xi(σ(α)) = σ(Xi(α)). Thus, if we fix some orbital Xl = G(α, β), then

(AiAj)αβ = |Xi(α) ∩ Xj′(β)|
= |σ(Xi(α) ∩ Xj′(β))|
= |σ(Xi(α)) ∩ σ(Xj′(β))|
= |Xi(σ(α)) ∩ Xj′(σ(β))|,

hence (AiAj)αβ is constant for all (α, β) ∈ Xl, which shows that C is indeed a coherent configuration, and
we denote this coherent configuration by Inv(G). It is clear that the fibers of this configuration are given by
the orbits Orb(G, X) of the action of G on X, hence Inv(G) is homogeneous iff G is transitive on X. We
also claim that

Orb(Gα, X) = {Xi(α)|i ∈ {0, ..., d}} \ {∅}.

We first note that each set Xi(α) is Gα-invariant, hence it is a disjoint union of Gα-orbits. If γ, γ′ ∈ Xi(α),
then both (α, γ) and (α, γ′) belong to Xi, and since this is an orbital, it follows that there exists some σ ∈ G
such that

σ(α, γ) = (α, γ′),

thus σ ∈ Gα, implying that Xi(α) is contained in some Gα-orbit, thus Xi(α) must itself be an Gα-orbit.
Now if ∆ is a Gα-orbit, then any pairs γ, γ′ ∈ ∆ are such that (α, γ), (α, γ′) belong to the same orbital Xi,
hence ∆ = Xi(α), which proves the claim.

If S ⊆ Mn(C) is a set of matrices, we define its centralizer (or commutant) as

C(S) = {B ∈ Mn(C)|BA = AB, ∀A ∈ S}.

If G is a group of permutation matrices, then C(G) is a coherent algebra, and in fact, we can show that
C(G) is the coherent algebra associated with the configuration Inv(G).

Theorem 14. If G is a group of permutation matrices on GL(n,C), then the coherent algebra A generated
by Inv(G) is precisely C(G).

Proof. We first note that if A0, ..., Ad are the adjacency matrices of the orbitals of G, and if (α, β) ∈ Xi, then

(P T AiP )αβ = (Ai)P (α,β) = (Ai)αβ,

hence Ai ∈ C(G), and thus A ⊆ C(G). Conversely, if P T AiP = A for any P ∈ G, then the 01 components
of A are precisely the adjacency matrices of the orbitals of G on X, hence A ∈ A. ■

If X is a DRG with automorphism group G, then this means that

C[A] = C[I, A, ..., Ad] ⊆ C(G).
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The group G clearly acts on the sets of ordered tuples Xi of X, and it this action is transitive on each Xi,
that is, if for any pair (α, β), (γ, θ) ∈ Xi, there exists some σ ∈ G such that (σα, σβ) = (γ, θ), then we say
that X is distance-transitive. Every distance-transitive graph is distance regular, however we cannot in
general determine if a DRG is distance-transitive from its intersection array. We can however note that if X
is distance-transitive with diameter d, then the coherent algebra generated by Inv(G) has precisely d + 1
orbitals, hence it has dimension d + 1, implying that C(G) = C[A].
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